Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 104(16): 163002, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20482045

RESUMO

We investigate the impact of electron-electron correlation on the ionization dynamics of helium in intense, high-frequency laser fields by solving the time-dependent Schrödinger equation from first principles. Although we observe a decrease in the total ionization yield at high field strengths, the hallmark of atomic stabilization, the repulsion between the electrons has a detrimental effect on the degree of stabilization, in particular for short pulses. Investigation of the ion channel yields reveals that the double ionization process is less prone to two-electron effects, and consequently exhibits the most distinct signature of stabilization. We also find that commonly used one-dimensional models tend to overestimate the effect of correlation.

2.
Phys Rev Lett ; 97(4): 043601, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16907572

RESUMO

The ionization of H(1s) in superintense, high-frequency, attosecond pulses is studied beyond the dipole approximation. We identify a unique nondipole 3rd lobe in the angular distribution of the ejected electron and show that this lobe has a well-defined classical counterpart. The ionization is likely to occur in the direction opposite to the laser propagation direction, which is fully understood from an analysis of the classical dynamics.

3.
Phys Rev Lett ; 95(9): 093002, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-16197212

RESUMO

We present three-dimensional time-dependent calculations of ionization of arbitrarily spatially oriented H+2 by attosecond, intense, high-frequency laser fields. The ionization probability shows a strong dependence on both the internuclear distance and the relative orientation between the laser field and the internuclear axis. The physical features are explained in terms of two-center interference effects.

4.
Phys Rev Lett ; 95(4): 043601, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-16090806

RESUMO

The exact nondipole minimal-coupling Hamiltonian for an atom interacting with an explicitly time- and space-dependent laser field is transformed into the rest frame of a classical free electron in the laser field, i.e., into the Kramers-Henneberger frame. The new form of the Hamiltonian is used to study nondipole effects in the high-intensity, high-frequency regime. Fully three-dimensional nondipole ab initio wave packet calculations show that the ionization probability may decrease for increasing field strength. We identify a unique signature for the onset of this dynamical stabilization effect in the photoelectron spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA