Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 22235, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34782641

RESUMO

To decarbonize the building sector, the use of durable wood materials must be increased. Inspiration for environmentally benign wood protection systems is sought in durable tree species depositing phenolic extractives in their heartwood. Based on the hypothesis that the micro-distribution of extractives influences durability, we compared the natural impregnation patterns of non-durable, but readily available Norway spruce to more durable Kurile larch by mapping the distribution of heartwood extractives with Confocal Raman Imaging and multivariate data decomposition. Phenolics of both species were associated with hydrophobic oleoresin, likely facilitating diffusion through the tissue. They accumulated preferentially in lignin-rich sub-compartments of the cell wall. Yet, the distribution of extractives was found not to be the same. The middle lamellae contained flavonoids in larch and aromatic waxes in spruce, which was also found in rays and epithelial cells. Spruce-lignans were tentatively identified in all cell types, while larch-flavonoids were not present in resin channels, hinting at a different origin of synthesis. Larch-oleoresin without flavonoids was only found in lumina, indicating that the presence of phenolics in the mixture influences the final destination. Together our findings suggest, that spruce heartwood-defense focuses on water regulation, while the more efficient larch strategy is based on antioxidants.

2.
Front Plant Sci ; 11: 855, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695126

RESUMO

Extractives found in the heartwood of a moderately durable conifer (Larix gmelinii var. japonica) were compared with those found in a non-durable one (Picea abies). We identified and quantified heartwood extractives by extraction with solvents of different polarities and gas chromatography with mass spectral detection (GC-MS). Among the extracted compounds, there was a much higher amount of hydrophilic phenolics in larch (flavonoids) than in spruce (lignans). Both species had similar resin acid and fatty acid contents. The hydrophobic resin components are considered fungitoxic and the more hydrophilic components are known for their antioxidant activity. To ascertain the importance of the different classes of extractives, samples were partially extracted prior to subjection to the brown-rot fungus Rhodonia placenta for 2-8 weeks. Results indicated that the most important (but rather inefficient) defense in spruce came from the fungitoxic resin, while large amounts of flavonoids played a key role in larch defense. Possible moisture exclusion effects of larch extractives were quantified via the equilibrium moisture content of partially extracted samples, but were found to be too small to play any significant role in the defense against incipient brow-rot attack.

3.
Front Plant Sci ; 10: 1701, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117328

RESUMO

Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here we follow heartwood formation in Larix gmelinii var. Japonica by use of synchrotron infrared images analyzed by the unmixing method Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). A subset of the specimens was also analyzed using atomic force microscopy infrared spectroscopy. The main spectral changes observed in the transition zone when going from sapwood to heartwood was a decrease in the intensity of a peak at approximately 1660 cm-1 and an increase in a peak at approximately 1640 cm-1. There are several possible interpretations of this observation. One possibility that is supported by the MCR-ALS unmixing is that heartwood formation in larch is a type II or Juglans-type of heartwood formation, where phenolic precursors to extractives accumulate in the sapwood rays. They are then oxidized and/or condensed in the transition zone and spread to the neighboring cells in the heartwood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...