Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255769

RESUMO

Carotid artery stenosis (CAS) affects approximately 5-7.5% of older adults and is recognized as a significant risk factor for vascular cognitive impairment (VCI). The impact of CAS on cerebral blood flow (CBF) within the ipsilateral hemisphere relies on the adaptive capabilities of the cerebral microcirculation. In this study, we aimed to test the hypothesis that the impaired availability of nitric oxide (NO) compromises CBF homeostasis after unilateral carotid artery occlusion (CAO). To investigate this, three mouse models exhibiting compromised production of NO were tested: NOS1 knockout, NOS1/3 double knockout, and mice treated with the NO synthesis inhibitor L-NAME. Regional CBF changes following CAO were evaluated using laser-speckle contrast imaging (LSCI). Our findings demonstrated that NOS1 knockout, NOS1/3 double knockout, and L-NAME-treated mice exhibited impaired CBF adaptation to CAO. Furthermore, genetic deficiency of one or two NO synthase isoforms increased the tortuosity of pial collaterals connecting the frontoparietal and temporal regions. In conclusion, our study highlights the significant contribution of NO production to the functional adaptation of cerebrocortical microcirculation to unilateral CAO. We propose that impaired bioavailability of NO contributes to the impaired CBF homeostasis by altering inter- and intrahemispheric blood flow redistribution after unilateral disruption of carotid artery flow.


Assuntos
Doenças das Artérias Carótidas , Estenose das Carótidas , Animais , Camundongos , Óxido Nítrico , NG-Nitroarginina Metil Éster/farmacologia , Circulação Cerebrovascular , Artéria Carótida Primitiva
2.
J Funct Biomater ; 13(3)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35997457

RESUMO

The present research aimed to characterize soft tissue implants that were prepared with the use of crosslinked hyaluronic acid (HA) using two different crosslinkers and multiple reagent concentrations, alone or in combination with fibrin. The effect of the implants was evaluated in an in vivo mouse model, after 4 weeks in one group and after 12 weeks in the other. The explants were compared using analytical methods, evaluating microscopic images, and a histology analysis. The kinetics of the degradation and remodeling of explants were found to be greatly dependent on the concentration and type of crosslinker; generally, divinyl sulfone (DVS) resists degradation more effectively compared to butanediol diglycidyl ether (BDDE). The presence of fibrin enhances the formation of blood vessels, and the infiltration of cells and extracellular matrix. In summary, if the aim is to create a soft tissue implant with easier degradation of the HA content, then the use of 2-5% BDDE is found to be optimal. For a longer degradation time, 5% DVS is the more suitable crosslinker. The use of fibrin was found to support the biological process of remodeling, while keeping the advances of HA in void filling, enabling the parallel degradation and remodeling processes.

3.
Tissue Eng Part A ; 27(11-12): 806-820, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32854588

RESUMO

Hyaluronic acid (HA) is an ideal initial material for preparing hydrogels, which may be used as scaffolds in soft tissue engineering based on their advantageous physical and biological properties. In this study, two crosslinking agents, divinyl sulfone (DVS) and butanediol diglycidyl ether, were used to investigate their effect on the properties of HA hydrogels. As HA hydrogels alone do not promote cell adhesion on the scaffold, fibrin and serum from platelet-rich fibrin (SPRF) were combined with the scaffold; the aim was to create a material intended to be used as soft tissue implant that facilitates new tissue formation, and degrades over time. The chemical changes were characterized and cell attachment capacity of the protein-containing gels was examined using human mesenchymal stem cells, and viability was assessed using live-dead staining. Fourier-transform infrared measurements revealed that linking fibrin into the gel was more effective than linking SPRF. The scaffolds were found to be able to support cell adherence onto the hydrogels, and the best result was achieved when HA was crosslinked with DVS and contained fibrin. The most promising derivative, 5% DVS-crosslinked fibrin-containing hydrogel, was injected subcutaneously into C57BL/6 mice for 12 weeks. The scaffold was proven to be biocompatible, remodeling, and vascularization occurred, while shape and integrity were maintained. Impact statement Fibrin was combined with crosslinked hyaluronic acid (HA) for regenerative application, the structure of the combination of crosslinked HA with blood-derived protein was analyzed and effective coating was proven. It was observed that the fibrin content led to better mesenchymal stem cell attachment in vitro. The compositions showed biocompatibility, connective tissue and vascularization took place when implanted in vivo. Thus, a biocompatible, injectable gel was produced, which is a potential candidate for soft tissue implantation.


Assuntos
Ácido Hialurônico , Hidrogéis , Animais , Tecido Conjuntivo , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Engenharia Tecidual
4.
Cells ; 9(6)2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545499

RESUMO

Vitamin D insufficiency has been associated with increased incidence and severity of cerebrovascular disorders. We analyzed the impact of impaired vitamin D signaling on the anatomical and functional aspects of cerebrovascular adaptation to unilateral carotid artery occlusion (CAO), a common consequence of atherosclerosis and cause of ischemic stroke. Cerebrocortical blood flow (CoBF) showed a significantly increased drop and delayed recovery after CAO in mice carrying a functionally inactive vitamin D receptor (VDR) with the most sustained perfusion deficit in the temporal cortex. To identify the cause(s) for this altered adaptation, the extent of compensatory blood flow increase in the contralateral carotid artery and the morphology of pial collaterals between the anterior and middle cerebral arteries were determined. Whereas VDR deficiency had no significant influence on the contralateral carotid arterial blood flow increase, it was associated with decreased number and increased tortuosity of pial anastomoses resulting in unfavorable changes of the intracranial collateral circulation. These results indicate that VDR deficiency compromises the cerebrovascular adaptation to CAO with the most sustained consequences in the temporal cortex. The dysregulation can be attributed to the altered development and function of pial collateral circulation whereas extracranial vessels may not be impaired.


Assuntos
Arteriopatias Oclusivas/etiologia , Doenças das Artérias Carótidas/metabolismo , Deficiência de Vitamina D/complicações , Vitamina D/metabolismo , Animais , Arteriopatias Oclusivas/fisiopatologia , Artérias Carótidas/metabolismo , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas/fisiopatologia , Circulação Colateral/fisiologia , Masculino , Camundongos
5.
Int J Mol Sci ; 20(24)2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31861195

RESUMO

Sphingosine-1-phosphate (S1P) has been implicated recently in the physiology and pathology of the cardiovascular system including regulation of vascular tone. Pilot experiments showed that the vasoconstrictor effect of S1P was enhanced markedly in the presence of phenylephrine (PE). Based on this observation, we hypothesized that S1P might modulate α1-adrenergic vasoactivity. In murine aortas, a 20-minute exposure to S1P but not to its vehicle increased the Emax and decreased the EC50 of PE-induced contractions indicating a hyperreactivity to α1-adrenergic stimulation. The potentiating effect of S1P disappeared in S1P2 but not in S1P3 receptor-deficient vessels. In addition, smooth muscle specific conditional deletion of G12/13 proteins or pharmacological inhibition of the Rho-associated protein kinase (ROCK) by Y-27632 or fasudil abolished the effect of S1P on α1-adrenergic vasoconstriction. Unexpectedly, PE-induced contractions remained enhanced markedly as late as three hours after S1P-exposure in wild-type (WT) and S1P3 KO but not in S1P2 KO vessels. In conclusion, the S1P-S1P2-G12/13-ROCK signaling pathway appears to have a major influence on α1-adrenergic vasoactivity. This cooperativity might lead to sustained vasoconstriction when increased sympathetic tone is accompanied by increased S1P production as it occurs during acute coronary syndrome and stroke.


Assuntos
Lisofosfolipídeos/farmacologia , Receptores Adrenérgicos alfa 1/fisiologia , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Amidas/farmacologia , Animais , Sinergismo Farmacológico , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenilefrina/farmacologia , Piridinas/farmacologia , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Quinases Associadas a rho/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...