Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Entomol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869370

RESUMO

Chironomids of the genus Diamesa (Meigen, 1835, Diptera: Chironomidae) inhabit cold, oxygen-rich running waters. We have investigated the presence of Diamesa and other freshwater macroinvertebrates at 22 stream sampling sites in 3 European high mountain regions (the Central Pyrenees, the Ötztal Alps, and the Tatra Mountains) to establish suitable temperature conditions for Diamesa dominance. It has been generally accepted that their high abundance was linked to the presence of glaciers; however, we have shown that in the Tatra Mountains, where there are no glaciers, the conditions for the dominance of Diamesa species are created due to permanent snowfields, the geographical orientation of the valley and shading by the surrounding high peaks. The historical connection of Diamesa to glaciers was investigated from the paleolimnological records of subfossil chironomid assemblages from the Bohemian Forest, where glaciers disappeared before or during the Late Glacial period. As expected, water temperature seems to be the main driver of Diamesa distribution, and we determined that the relative abundance of Diamesa species was significantly higher at the sites with a mean July water temperature below 6.5 °C. The Diamesa-dominated stream communities seems to be endangered due to ongoing climate warming and this assumption is supported by our paleolimnological results from the Bohemian Forest lakes, where Diamesa has disappeared due to warming of lake inflows at the beginning of the Holocene. These findings strengthen the former suggestions that some Diamesa species could be used as an indicator for tracking recent environmental changes in vulnerable ecosystems of cold mountain streams.

2.
PLoS One ; 19(2): e0298367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358970

RESUMO

Diamesa species (Diptera, Chironomidae) are widely distributed in freshwater ecosystems, and their life cycles are closely linked to environmental variables such as temperature, water quality, and sediment composition. Their sensitivity to environmental changes, particularly in response to pollution and habitat alterations, makes them valuable indicators of ecosystem health. The challenges associated with the morphological identification of larvae invoke the use of DNA barcoding for species determination. The mitochondrial cytochrome oxidase subunit I (COI) gene is regularly used for species identification but faces limitations, such as similar sequences in closely related species. To overcome this, we explored the use of the internal transcribed spacers (ITS) region in addition to COI for Diamesa larvae identification. Therefore, this study employs a combination of molecular markers alongside traditional morphological identification to enhance species discrimination. In total, 129 specimens were analysed, of which 101 were sampled from a glacier-fed stream in Rotmoostal, and the remaining 28 from spring-fed streams in the neighbouring valleys of Königstal and Timmelstal. This study reveals the inadequacy of utilizing single COI or ITS genes for comprehensive species differentiation within the genus Diamesa. However, the combined application of COI and ITS markers significantly enhances species identification resolution, surpassing the limitations faced by traditional taxonomists. Notably, this is evident in cases involving morphologically indistinguishable species, such as Diamesa latitarsis and Diamesa modesta. It highlights the potential of employing a multi-marker approach for more accurate and reliable Diamesa species identification. This method can be a powerful tool for identifying Diamesa species, shedding light on their remarkable adaptations to extreme environments and the impacts of environmental changes on their populations.


Assuntos
Chironomidae , Dípteros , Animais , Chironomidae/genética , Dípteros/genética , Ecossistema , Larva/anatomia & histologia , Rios , Áustria , Código de Barras de DNA Taxonômico
3.
Artigo em Inglês | MEDLINE | ID: mdl-37419411

RESUMO

Chironomids (non-biting midges) inhabit almost every wet or semi-wet continental environment on Earth with probably 10,000 different species. Species occurrence and composition are undoubtedly limited by environmental harshness and food availability being reflected in their energy stores. Most animals store energy as glycogen and lipid. They enable the animals to survive adverse situations and to continue growth, development, and reproduction. This general statement is also true for insects and also particularly true for chironomid larvae. The rationale behind this research was, that probably any stress, any environmental burden, and any harmful influence increases the energy requirement of individual larvae depleting energy stores. We developed new methods to measure the glycogen and lipid content in small tissue samples. Here we show how to apply these methods to single chironomid larvae to demonstrate their energy stores. We compared different locations of the high Alpine rivers along harshness gradient densely populated and dominated by chironomid larvae. All samples show very low energy stores without any major differences. We found glycogen concentrations below 0.01% of dry weight (DW) and lipid concentrations below 5% of DW irrespective of the specific sampling point. These values are among the lowest ever observed in chironomid larvae. We demonstrate that individuals living in extreme environment are stressed leading to reduced energy stores in their bodies. This appears to be a general feature of high altitude regions. Our results provide new insights and a better understanding of population and ecological dynamics in harsh mountainous areas, also in view of a changing climate.


Assuntos
Chironomidae , Animais , Larva , Rios , Áustria , Lipídeos
5.
Sci Total Environ ; 853: 158611, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36087665

RESUMO

Mountains are an essential component of the global life-support system. They are characterized by a rugged, heterogenous landscape with rapidly changing environmental conditions providing myriad ecological niches over relatively small spatial scales. Although montane species are well adapted to life at extremes, they are highly vulnerable to human derived ecosystem threats. Here we build on the manifesto 'World Scientists' Warning to Humanity', issued by the Alliance of World Scientists, to outline the major threats to mountain ecosystems. We highlight climate change as the greatest threat to mountain ecosystems, which are more impacted than their lowland counterparts. We further discuss the cascade of "knock-on" effects of climate change such as increased UV radiation, altered hydrological cycles, and altered pollution profiles; highlighting the biological and socio-economic consequences. Finally, we present how intensified use of mountains leads to overexploitation and abstraction of water, driving changes in carbon stock, reducing biodiversity, and impacting ecosystem functioning. These perturbations can provide opportunities for invasive species, parasites and pathogens to colonize these fragile habitats, driving further changes and losses of micro- and macro-biodiversity, as well further impacting ecosystem services. Ultimately, imbalances in the normal functioning of mountain ecosystems will lead to changes in vital biological, biochemical, and chemical processes, critically reducing ecosystem health with widespread repercussions for animal and human wellbeing. Developing tools in species/habitat conservation and future restoration is therefore essential if we are to effectively mitigate against the declining health of mountains.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Mudança Climática , Água , Carbono , Conservação dos Recursos Naturais
6.
Glob Chang Biol ; 24(12): 5828-5840, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30230660

RESUMO

Climate change poses a considerable threat to the biodiversity of high altitude ecosystems worldwide, including cold-water river systems that are responding rapidly to a shrinking cryosphere. Most recent research has demonstrated the severe vulnerability of river invertebrates to glacier retreat but effects upon other aquatic groups remain poorly quantified. Using new data sets from the European Alps, we show significant responses to declining glacier cover for diatoms, which play a critical functional role as freshwater primary producers. Specifically, diatom α-diversity and density in rivers presently fed by glaciers will increase with future deglaciation, yet ß-diversity within and between sites will reduce because declining glacier influence will lower the spatiotemporal variability of glacier cover and its associated habitat heterogeneity. Changes in diatom assemblage composition as glacier cover declined were associated strongly with increasing riverbed stability and water temperature. At the species level, diatoms showed a gradation of responses; for example, Eunotia trinacria, found exclusively at river sites with high (≥52%) catchment glacier cover, may be affected negatively by ice loss. Conversely, seven taxa confined to sites with no glacier cover, including Gomphonema calcareum, stand to benefit. Nineteen (22%) taxa were noted as threatened, endangered, rare or decreasing on the Red List of Algae for Germany, with most at sites ≤26% glacier cover, meaning further ice loss may benefit these diatoms. However, six taxa found only in rivers ≥28% glacier cover may require reclassification of their Red List conservation status, as this habitat is threatened by deglaciation. Our identification of clear links between decreasing glacier cover and river diatom biodiversity suggests there could be significant reorganization of river ecosystems with deglaciation, for example, through alterations to primary production, biogeochemical cycles, and the shifting resource base of alpine freshwater food webs which lack significant allochthonous energy inputs.


Assuntos
Biodiversidade , Mudança Climática , Diatomáceas , Camada de Gelo , Rios , Animais , Ecossistema , Alemanha
7.
Nat Ecol Evol ; 2(2): 325-333, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255301

RESUMO

Global change threatens invertebrate biodiversity and its central role in numerous ecosystem functions and services. Functional trait analyses have been advocated to uncover global mechanisms behind biodiversity responses to environmental change, but the application of this approach for invertebrates is underdeveloped relative to other organism groups. From an evaluation of 363 records comprising >1.23 million invertebrates collected from rivers across nine biogeographic regions on three continents, consistent responses of community trait composition and diversity to replicated gradients of reduced glacier cover are demonstrated. After accounting for a systematic regional effect of latitude, the processes shaping river invertebrate functional diversity are globally consistent. Analyses nested within individual regions identified an increase in functional diversity as glacier cover decreases. Community assembly models demonstrated that dispersal limitation was the dominant process underlying these patterns, although environmental filtering was also evident in highly glacierized basins. These findings indicate that predictable mechanisms govern river invertebrate community responses to decreasing glacier cover globally.


Assuntos
Biodiversidade , Aquecimento Global , Camada de Gelo , Invertebrados/fisiologia , Rios , Animais , Ecossistema , Europa (Continente) , Nova Zelândia , América do Norte
8.
Proc Natl Acad Sci U S A ; 114(37): 9770-9778, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28874558

RESUMO

Glaciers cover ∼10% of the Earth's land surface, but they are shrinking rapidly across most parts of the world, leading to cascading impacts on downstream systems. Glaciers impart unique footprints on river flow at times when other water sources are low. Changes in river hydrology and morphology caused by climate-induced glacier loss are projected to be the greatest of any hydrological system, with major implications for riverine and near-shore marine environments. Here, we synthesize current evidence of how glacier shrinkage will alter hydrological regimes, sediment transport, and biogeochemical and contaminant fluxes from rivers to oceans. This will profoundly influence the natural environment, including many facets of biodiversity, and the ecosystem services that glacier-fed rivers provide to humans, particularly provision of water for agriculture, hydropower, and consumption. We conclude that human society must plan adaptation and mitigation measures for the full breadth of impacts in all affected regions caused by glacier shrinkage.


Assuntos
Agricultura/métodos , Ecossistema , Aquecimento Global , Camada de Gelo , Biodiversidade , Clima , Cadeia Alimentar , Humanos , Hidrologia , Rios
9.
Philos Trans R Soc Lond B Biol Sci ; 370(1662): 20140060, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25561679

RESUMO

Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.


Assuntos
Distribuição Animal , Astacoidea/fisiologia , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Animais , Austrália , Conservação dos Recursos Naturais/tendências , Água Doce , Geografia , Dinâmica Populacional , Especificidade da Espécie
10.
PLoS One ; 8(1): e53139, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341928

RESUMO

The European Alps harbour a unique and species-rich biodiversity, which is increasingly impacted by habitat fragmentation through land-use changes, urbanization and expanding transport infrastructure. In this study, we identified the 50 most important questions relating to the maintenance and restoration of an ecological continuum - the connectedness of ecological processes across many scales including trophic relationship and disturbance processes and hydro-ecological flows in the European Alps. We initiated and implemented a trans-national priority setting exercise, inviting 48 institutions including researchers, conservation practitioners, NGOs, policymakers and administrators from the Alpine region. The exercise was composed of an initial call for pertinent questions, a first online evaluation of the received questions and a final discussion and selection process during a joint workshop. The participating institutions generated 484 initial questions, which were condensed to the 50 most important questions by 16 workshop participants. We suggest new approaches in tackling the issue of an ecological continuum in the Alps by analysing and classifying the characteristics of the resulting questions in a non-prioritized form as well as in a visual conceptualisation of the inter-dependencies among these questions. This priority setting exercise will support research and funding institutions in channelling their capacities and resources towards questions that need to be urgently addressed in order to facilitate significant progress in biodiversity conservation in the European Alps.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...