Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(14): 149901, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476499

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.125.163001.

2.
Phys Rev Lett ; 125(16): 163001, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124859

RESUMO

We report on the first coherent excitation of the highly forbidden ^{2}S_{1/2}→^{2}F_{7/2} electric octupole (E3) transition in a single trapped ^{172}Yb^{+} ion, an isotope without nuclear spin. Using the transition in ^{171}Yb^{+} as a reference, we determine the transition frequency to be 642 116 784 950 887.6(2.4) Hz. We map out the magnetic field environment using the forbidden ^{2}S_{1/2}→^{2}D_{5/2} electric quadrupole (E2) transition and determine its frequency to be 729 476 867 027 206.8(4.4) Hz. Our results are a factor of 1×10^{5} (3×10^{5}) more accurate for the E2 (E3) transition compared to previous measurements. The results open up the way to search for new physics via precise isotope shift measurements and improved tests of local Lorentz invariance using the metastable ^{2}F_{7/2} state of Yb^{+}.

3.
Phys Rev Lett ; 122(25): 253401, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347879

RESUMO

We report on the observation of interactions between ultracold Rydberg atoms and ions in a Paul trap. The rate of observed inelastic collisions, which manifest themselves as charge transfer between the Rydberg atoms and ions, exceeds that of Langevin collisions for ground state atoms by about 3 orders of magnitude. This indicates a huge increase in interaction strength. We study the effect of the vacant Paul trap's electric fields on the Rydberg excitation spectra. To quantitatively describe the exhibited shape of the ion loss spectra, we need to include the ion-induced Stark shift on the Rydberg atoms. Furthermore, we demonstrate Rydberg excitation on a dipole-forbidden transition with the aid of the electric field of a single trapped ion. Our results confirm that interactions between ultracold atoms and trapped ions can be controlled by laser coupling to Rydberg states. Adding dynamic Rydberg dressing may allow for the creation of spin-spin interactions between atoms and ions, and the elimination of collisional heating due to ionic micromotion in atom-ion mixtures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...