Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1841(3): 390-400, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23954555

RESUMO

Lipoxygenases (LOX) are key enzymes in the biosynthesis of a variety of highly active oxylipins which act as signaling molecules involved in the regulation of many biological processes. LOX are also able to oxidize complex lipids and modify membrane structures leading to structural changes that play a role in the maturation and terminal differentiation of various cell types. The mammalian skin represents a tissue with highly abundant and diverse LOX metabolism. Individual LOX isozymes are thought to play a role in the modulation of epithelial proliferation and/or differentiation as well as in inflammation, wound healing, inflammatory skin diseases and cancer. Emerging evidence indicates a structural function of a particular LOX pathway in the maintenance of skin permeability barrier. Loss-of-function mutations in the LOX genes ALOX12B and ALOXE3 have been found to represent the second most common cause of autosomal recessive congenital ichthyosis and targeted disruption of the corresponding LOX genes in mice resulted in neonatal death due to a severely impaired permeability barrier function. Recent data indicate that LOX action in barrier function can be traced back to the oxygenation of linoleate-containing ceramides which constitutes an important step in the formation of the corneocyte lipid envelope. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Epiderme/enzimologia , Metabolismo dos Lipídeos , Lipoxigenase/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Ceramidas/genética , Ceramidas/metabolismo , Epiderme/patologia , Humanos , Ictiose Lamelar/enzimologia , Ictiose Lamelar/genética , Ictiose Lamelar/patologia , Lipoxigenase/genética , Camundongos , Mutação
2.
Mol Cell Biol ; 30(16): 4077-91, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20530198

RESUMO

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) is essential for adipogenesis. Although several fatty acids and their derivatives are known to bind and activate PPAR gamma, the nature of the endogenous ligand(s) promoting the early stages of adipocyte differentiation has remained enigmatic. Previously, we showed that lipoxygenase (LOX) activity is involved in activation of PPAR gamma during the early stages of adipocyte differentiation. Of the seven known murine LOXs, only the unconventional LOX epidermis-type lipoxygenase 3 (eLOX3) is expressed in 3T3-L1 preadipocytes. Here, we show that forced expression of eLOX3 or addition of eLOX3 products stimulated adipogenesis under conditions that normally require an exogenous PPAR gamma ligand for differentiation. Hepoxilins, a group of oxidized arachidonic acid derivatives produced by eLOX3, bound to and activated PPAR gamma. Production of hepoxilins was increased transiently during the initial stages of adipogenesis. Furthermore, small interfering RNA-mediated or retroviral short hairpin RNA-mediated knockdown of eLOX3 expression abolished differentiation of 3T3-L1 preadipocytes. Finally, we demonstrate that xanthine oxidoreductase (XOR) and eLOX3 synergistically enhanced PPAR gamma-mediated transactivation. Collectively, our results indicate that hepoxilins produced by the concerted action of XOR and eLOX3 may function as PPAR gamma activators capable of promoting the early PPAR gamma-dependent steps in the conversion of preadipocytes into adipocytes.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Lipoxigenase/metabolismo , PPAR gama/metabolismo , Células 3T3-L1 , Acetilcisteína/farmacologia , Adipócitos/efeitos dos fármacos , Adipogenia/fisiologia , Animais , Antioxidantes/farmacologia , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação para Baixo , Eicosanoides/metabolismo , Genes do Retinoblastoma , Ligantes , Lipoxigenase/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , PPAR gama/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Cancer Lett ; 284(1): 21-9, 2009 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-19442433

RESUMO

3-Nitrobenzanthrone (3-NBA), a genotoxic mutagen found in diesel exhaust and ambient air pollution and its active metabolite N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) were tested for initiating and complete carcinogenic activity in the NMRI mouse skin carcinogenesis model. Both compounds were found to be inactive as either tumour initiators or complete carcinogens in mouse skin over a dose range of 25-400nmol. Topical application of 3-NBA and N-OH-3-ABA produced DNA adduct patterns in epidermis, detected by (32)P-postlabelling, similar to those found previously in other organs of rats and mice. 24h after a single treatment of 100nmol DNA adduct levels produced by 3-NBA (18+/-4 adducts/10(8) nucleotides) were 6 times lower than those by 7,12-dimethylbenz[a]anthracene (DMBA; 114+/-37 adducts/10(8) nucleotides). In contrast, identical treatment with N-OH-3-ABA resulted in adduct levels in the same range as with DMBA (136+/-25 adducts/10(8) nucleotides), indicating that initial DNA adduct levels do not parallel tumour initiating activity. When compounds were tested for tumour initiating activity by a single treatment followed by twice-weekly applications of TPA, DNA adducts formed by DMBA, but not by 3-NBA or N-OH-3-ABA, were still detectable 40weeks after treatment. When tested for activity as complete carcinogens by twice-weekly topical application, 3-NBA and N-OH-3-ABA produced identical DNA adduct profiles in mouse skin, with adducts still detectable after 40weeks. Only 3-NBA produced detectable adducts in other organs.


Assuntos
Benzo(a)Antracenos/toxicidade , Carcinógenos/toxicidade , Transformação Celular Neoplásica/efeitos dos fármacos , Adutos de DNA/metabolismo , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Poluentes Atmosféricos/metabolismo , Poluentes Atmosféricos/toxicidade , Animais , Benzo(a)Antracenos/metabolismo , Carcinógenos/metabolismo , Dano ao DNA/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/patologia , Feminino , Camundongos , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Emissões de Veículos
4.
J Invest Dermatol ; 129(6): 1429-36, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19122646

RESUMO

12R-lipoxygenase (12R-LOX) represents a key enzyme of a recently identified eicosanoid pathway in the skin that plays an essential role in the establishment and/or maintenance of the epidermal barrier function. Genetic studies show that loss-of-function mutations in ALOX12B, encoding 12R-LOX, and in ALOXE3, encoding another closely related LOX involved in this pathway, are the second most common cause for autosomal recessive congenital ichthyosis (ARCI). To investigate the pathomechanism of ARCI and the function of 12R-LOX, we recently generated a 12R-LOX knockout model. 12R-LOX-deficient mice die rapidly after birth from severe barrier dysfunction without exhibiting an obvious cutaneous phenotype. Thus, we analyzed the adult phenotype of 12R-LOX(-/-) skin transplanted onto nude mice. 12R-LOX(-/-) skin develops an ichthyosiform appearance with thickening of the epidermis, hyperproliferation, hypergranulosis, focal parakeratosis, and severe hyperkeratosis. The adult mutant mouse skin phenotype closely reproduces the ichthyosis phenotype seen in patients with ALOX12B mutations. Western blot analysis revealed restoration of profilaggrin processing that used to be disturbed in neonatal mutant skin and overexpression of filaggrin, involucrin, and repetin. The results indicate that 12R-LOX knockout mice may represent a useful animal model for a detailed analysis of mechanisms involved in ARCI forms that are associated with impaired LOX metabolism.


Assuntos
Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/fisiologia , Epiderme/metabolismo , Regulação da Expressão Gênica , Transplante de Pele , Animais , Proliferação de Células , Modelos Animais de Doenças , Proteínas Filagrinas , Heterozigoto , Camundongos , Camundongos Knockout , Camundongos Nus , Modelos Biológicos , Mutação , Fenótipo , Pele/metabolismo , Pele/ultraestrutura
5.
Anticancer Res ; 28(5A): 2825-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19035317

RESUMO

BACKGROUND: BCL-2 overexpression is frequently detected in nonmelanoma skin cancer. In normal skin, BCL-2 expression is restricted to the basal cell layer and the hair follicle bulge. Both contain stem cells targeted by carcinogens upon initiation of mouse skin carcinogenesis. It is unknown whether the anti-apoptotic activity of BCL-2 is involved in the susceptibility of this cell type to malignant transformation. If so, extending the pool of BCL-2-expressing cells to suprabasal skin layers should increase the likelihood of skin tumour formation. MATERIALS AND METHODS: To resolve this issue, we generated a novel transgenic mouse line overexpressing BCL-2 in suprabasal layers of the epidermis. The influence of suprabasal BCL-2 on tumour formation was then tested by chemically inducing skin cancer using the two-stage initiation-promotion protocol. RESULTS: Bcl-2 expression neither influenced the incidence nor the multiplicity of papillomas upon chemical tumour induction with 7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), nor their progression to carcinomas. CONCLUSION: Suprabasal expression of BCL-2 in skin does not increase the formation of papillomas or their malignant progression to squamous cell carcinomas in two-stage mouse skin carcinogenesis.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animais , Western Blotting , Carcinógenos , Carcinoma de Células Escamosas/induzido quimicamente , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Pele/efeitos dos fármacos , Pele/metabolismo , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol
6.
J Exp Med ; 205(2): 275-85, 2008 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-18208974

RESUMO

A broad range of experimental and clinical evidence has highlighted the central role of chronic inflammation in promoting tumor development. However, the molecular mechanisms converting a transient inflammatory tissue reaction into a tumor-promoting microenvironment remain largely elusive. We show that mice deficient for the receptor for advanced glycation end-products (RAGE) are resistant to DMBA/TPA-induced skin carcinogenesis and exhibit a severe defect in sustaining inflammation during the promotion phase. Accordingly, RAGE is required for TPA-induced up-regulation of proinflammatory mediators, maintenance of immune cell infiltration, and epidermal hyperplasia. RAGE-dependent up-regulation of its potential ligands S100a8 and S100a9 supports the existence of an S100/RAGE-driven feed-forward loop in chronic inflammation and tumor promotion. Finally, bone marrow chimera experiments revealed that RAGE expression on immune cells, but not keratinocytes or endothelial cells, is essential for TPA-induced dermal infiltration and epidermal hyperplasia. We show that RAGE signaling drives the strength and maintenance of an inflammatory reaction during tumor promotion and provide direct genetic evidence for a novel role for RAGE in linking chronic inflammation and cancer.


Assuntos
Inflamação/imunologia , Receptores Imunológicos/imunologia , Proteínas S100/imunologia , Neoplasias Cutâneas/imunologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/patologia , Proteínas Inflamatórias de Macrófagos/genética , Proteínas Inflamatórias de Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Proteínas S100/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol
7.
Neoplasia ; 9(11): 917-26, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18030360

RESUMO

Pancreatic cancer patients have an abysmal prognosis because of late diagnosis and lack of therapeutic options. Pancreatic intraepithelial neoplasias (PanINs), the precursor lesions, are a potential target for chemoprevention. Targeting eicosanoid pathways is an obvious choice because 5-lipoxygenase (5-LOX) has been suggested as a tumor promoter in pancreatic carcinogenesis. Here we provide evidence that 15-lipoxygenase-1 (15-LOX-1) expression and activity may exert antitumorigenic effects in pancreatic cancer. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis showed absence or very weak expression of 15-LOX-1 in all pancreatic cancer cell lines tested. 15-LOX-1 was strongly stained in normal ductal cells, tubular complexes, and centroacinar cells, but no staining was seen in islets, cancer cells, PanIN lesions, or in tumor cells in lymph node metastases, indicating that 15-LOX-1 expression is lost during tumor development in human pancreas. Overexpression of 15-LOX-1 in pancreatic tumor cells or treatment with its arachidonic acid-derived metabolite resulted in decreased cell growth. These findings provide evidence that loss of 15-LOX-1 may play an important role in pancreatic carcinogenesis, possibly as a tumor suppressor gene. Thus, induction of 15-LOX-1 expression may be an attractive option for the prevention and treatment of pancreatic cancer.


Assuntos
Araquidonato 15-Lipoxigenase/fisiologia , Neoplasias Pancreáticas/enzimologia , Araquidonato 15-Lipoxigenase/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Pâncreas/enzimologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle , RNA Mensageiro/análise
8.
Mol Carcinog ; 46(8): 705-10, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17546626

RESUMO

Epidemiologic, pharmacologic, clinical, and experimental studies document the importance of prostaglandin (PG) signaling in cancer development, including non-melanoma skin cancer lesions in humans and mice. First of all, enzymes involved in PG biosynthesis, such as cyclooxygenase (COX)-2 and/or membrane prostaglandin E synthase (mPGES)-1, were found to be overexpressed in a wide range of premalignant and malignant epithelial tumors, including those of the skin, breast, esophagus, stomach, colorectum, pancreas, and bladder. On the other hand, 15-hydroxy-prostaglandin dehydrogenase (15-PGDH), which is involved in the degradation pathway of PG including PGE(2,) thus counteracting the activities of COX-2 and PGES, was found to be downregulated in human epithelial tumors, indicating a tumor suppressor activity of this enzyme. Most remarkably, genetic studies showed that mice, which are deficient in COX-2 and/or PGES are resistant to the development of cancer of skin, colon, and stomach. In contrast, the forced overexpression of COX-2 in proliferative compartments of simple or stratified epithelia such as skin epidermis, urinary bladder, mammary gland, and pancreas results in spontaneous hyperplasia and dysplasia in transgenic mice. In skin, the pathological changes are found to be due to an abnormal process of terminal differentiation, while in other tissues, hyperproliferation seems to be the main contributor to the pre-invasive neoplasms. Moreover, the COX-2 transgenic mouse lines are sensitized for cancer development.


Assuntos
Transformação Celular Neoplásica , Ciclo-Oxigenase 2/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Prostaglandinas/metabolismo , Animais , Humanos , Neoplasias Epiteliais e Glandulares/patologia , Transdução de Sinais
9.
Exp Dermatol ; 16(5): 445-53, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17437488

RESUMO

Prostaglandin (PG) E(2), the predominant PG in skin, accumulates in experimentally produced mouse skin tumors. PGE(2) induces proliferation of mouse keratinocytes in vitro, epidermal hyperplasia and dysplasia, a promoted epidermis phenotype, and angiogenesis in keratin 5 promoter (K5) cyclooxygenase (COX)-2-transgenic NMRI mouse skin in vivo. PGE(2) is synthesized by COX-catalysed oxygenation of arachidonic acid to PGH(2) and its conversion to PGE(2) by prostaglandin E synthase (PGES) isoforms. PGE(2) signals via PGE(2) receptor isoforms EP1-EP4. Here, we investigated the expression profiles of PGES and EP receptors in wild type NMRI mouse skin constitutively expressing COX-1 when compared with the hyperplastic/dysplastic skin of homozygous K5 COX-2-transgenic mice and papillomas of both genotypes, which, in addition to COX-1, overexpress COX-2. The three PGES are constitutively expressed in normal and transgenic skin independent of the COX expression status. In papillomas, the increased PGE(2) levels correlate with an increased expression of mPGES-1 and cPGES. All four EP receptors were expressed in normal and transgenic skin. Only EP3 was slightly increased in transgenic skin. In papillomas of both genotypes, the expression levels of EP1 and EP4 were low when compared with those in wild type back skin. EP2 was the predominant receptor in papillomas of wild type and transgenic mice. In papillomas of wild type mice EP3 levels were slightly elevated when compared with transgenic tumors. EP1 and EP2 were localized in basal keratinocytes, sebaceous glands and CD31-positive vessels. Thus, normal and preinvasive mouse skin express the complete protein repertoire for PGE(2) biosynthesis and signalling.


Assuntos
Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Receptores de Prostaglandina E/genética , Receptores de Prostaglandina E/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , Animais , Sequência de Bases , Ciclo-Oxigenase 2/genética , Primers do DNA/genética , Técnica Indireta de Fluorescência para Anticorpo , Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Queratina-15 , Queratina-5/genética , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Papiloma/genética , Papiloma/metabolismo , Papiloma/patologia , Regiões Promotoras Genéticas , Prostaglandina-E Sintases , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Cutâneas/patologia
10.
J Cell Biol ; 177(1): 173-82, 2007 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-17403930

RESUMO

12R-lipoxygenase (12R-LOX) and the epidermal LOX-3 (eLOX-3) constitute a novel LOX pathway involved in terminal differentiation in skin. This view is supported by recent studies showing that inactivating mutations in 12R-LOX and eLOX-3 are linked to the development of autosomal recessive congenital ichthyosis. We show that 12R-LOX deficiency in mice results in a severe impairment of skin barrier function. Loss of barrier function occurs without alterations in proliferation and stratified organization of the keratinocytes, but is associated with ultrastructural anomalies in the upper granular layer, suggesting perturbance of the assembly/extrusion of lamellar bodies. Cornified envelopes from skin of 12R-LOX-deficient mice show increased fragility. Lipid analysis demonstrates a disordered composition of ceramides, in particular a decrease of ester-bound ceramide species. Moreover, processing of profilaggrin to monomeric filaggrin is impaired. This study indicates that the 12R-LOX-eLOX-3 pathway plays a key role in the process of epidermal barrier acquisition by affecting lipid metabolism, as well as protein processing.


Assuntos
Epiderme/fisiologia , Lipoxigenase/fisiologia , Animais , Araquidonato 12-Lipoxigenase , Permeabilidade da Membrana Celular , Proliferação de Células , Células Epidérmicas , Proteínas Filagrinas , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Queratinócitos/fisiologia , Metabolismo dos Lipídeos , Lipoxigenase/genética , Lipoxigenase/metabolismo , Camundongos , Camundongos Knockout , Fenótipo
11.
Recent Results Cancer Res ; 174: 37-47, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17302183

RESUMO

Tumor promotion is an essential process in multistage cancer development providing the conditions for clonal expansion and genetic instability of preneoplastic and premalignant cells. It is caused by a continuous disturbance of cellular signal transduction that results in an overstimulation of metabolic pathways along which mediators of cell proliferation and inflammation as well as genotoxic by-products are generated. Among such pathways the oxidative metabolism of arachidonic acid has turned out to be of utmost importance in tumor promotion. The aberrant overexpression of cyclooxygenase-2, an inducible enzyme of prostanoid synthesis and lipid peroxidation, is a characteristic feature of more than two-thirds of all human neoplasias, and the specific inhibition of this enzyme has been found to have a substantial chemopreventive effect in both animal models and man. The prostaglandins produced by COX-2 promote tumor development by stimulating cell proliferation and angiogenesis and by suppressing programmed cell death and immune defense. In mice, a COX-2 transgene fused with the keratin 5 promoter, which is constitutively active in the basal (proliferative) compartment of stratified and simple epithelia, causes a preneoplastic and premalignant phenotype in several organs. Among these organs, skin, mammary gland, urinary bladder, and pancreas have been investigated in more detail. Histologically and biochemically, the COX-2-dependent alterations resemble an autopromoted state that--as shown for skin and urinary bladder--strongly sensitizes the tissue for carcinogenesis. In transgenic animals COX-2 expression is not restricted to keratin 5-positive cells but is seen also in adjacent keratin 5-negative cells. This spreading of the COX-2 signal indicates a paracrine mechanism of autoamplification. While cancer chemoprevention by COX-2 inhibition is a rapidly developing field, much less is known about other pathways of unsaturated fatty acid metabolism, although some of them may play a role in carcinogenesis rivaling that of prostaglandin formation. Here an urgent demand for systematic research exists.


Assuntos
Transformação Celular Neoplásica , Ciclo-Oxigenase 2/metabolismo , Modelos Biológicos , Neoplasias/prevenção & controle , Transdução de Sinais/fisiologia , Animais , Humanos , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/fisiopatologia
12.
Prostaglandins Other Lipid Mediat ; 82(1-4): 128-34, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17164140

RESUMO

12R-lipoxygenase (12R-LOX) and epidermis-type LOX-3 (eLOX-3) are novel members of the multigene family of mammalian LOX. A considerable gap exists between the identification of these enzymes and their biologic function. Here, we present evidence that 12R-LOX and eLOX-3, acting in sequence, and eLOX-3 in combination with another, not yet identified LOX are critically involved in terminal differentiation of keratinocytes and adipocytes, respectively. Mutational inactivation of 12R-LOX and/or eLOX-3 has been found to be associated with development of an inherited ichthyosiform skin disorder in humans and genetic ablation of 12R-LOX causes a severe impairment of the epidermal lipid barrier in mice leading to post-natal death of the animals. In preadipocytes, a LOX-dependent PPARgamma activating ligand is released into the cell supernatant early upon induction of differentiation and available evidence indicates that this ligand is an eLOX-3-derived product. In accordance with this data is the observation that forced expression of eLOX-3 enhances adipocyte differentiation.


Assuntos
Araquidonato 12-Lipoxigenase/fisiologia , Epiderme/enzimologia , Lipoxigenase/fisiologia , Fenômenos Fisiológicos da Pele , Adipócitos/citologia , Adipócitos/enzimologia , Animais , Diferenciação Celular , Expressão Gênica , Humanos , Ictiose/genética , Ictiose/fisiopatologia , Queratinócitos/citologia , Lipoxigenase/genética , Camundongos , Permeabilidade
13.
J Lipid Res ; 48(3): 553-64, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17164225

RESUMO

Human 15-lipoxygenase (LOX)-2 and mouse 8-LOX represent orthologous members of the LOX family but display different positional specificities and tissue distribution. To study the functional role of 15-LOX-2 and 8-LOX in keratinocytes, an inducible Tet-On gene expression system was established in the premalignant mouse keratinocyte cell line 308. Doxycycline (dox)-induced expression of enzymatically active 15-LOX-2 and 8-LOX led to an inhibition of cell growth that was associated with an inhibition of DNA synthesis, as shown by a 15-46% reduction of 5-bromo-2-deoxy-uridine (BrdU) incorporation. The inhibitory effects were increased in the presence of exogenous arachidonic acid. In contrast, addition of linoleic acid or the LOX inhibitor baicalein reversed the growth-inhibitory effects. Treatment of the cells with 15-hydroxyeicosatetraenoic acid (HETE) or 8-HETE resulted in a similar inhibition of BrdU incorporation, whereas 13-hydroxyoctadecadienoic acid (HODE) and 9-HODE, in contrast, had no effects. Dox-induced keratinocytes showed increased levels of reactive oxygen species (ROS). The antioxidant N-acetyl-L-cysteine and a specific inhibitor of p38 mitogen-activated protein kinase, but not of extracellular signal-regulated kinase 1/2 or c-Jun N-terminal kinase/stress-activated kinases, completely abolished the LOX-induced growth inhibition, indicating a critical role of ROS and p38. Our data suggest that 15-LOX-2 and 8-LOX, although displaying different positional specificity, may use common signaling pathways to induce growth inhibition in premalignant epithelial cells.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato Lipoxigenases/metabolismo , Queratinócitos/metabolismo , Acetilcisteína/farmacologia , Animais , Araquidonato 15-Lipoxigenase/genética , Araquidonato Lipoxigenases/antagonistas & inibidores , Araquidonato Lipoxigenases/genética , Ácido Araquidônico/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Relação Dose-Resposta a Droga , Doxiciclina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Ácido Linoleico/farmacologia , Inibidores de Lipoxigenase/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Gastroenterology ; 130(7): 2165-78, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16762637

RESUMO

BACKGROUND & AIMS: Basic research aimed at a better understanding of pancreatic carcinogenesis and improving the treatment of this disease is crucial because the majority of pancreatic cancers are highly aggressive and therapeutically nonaccessible. Cyclooxygenase (COX)-2, which is a key enzyme of prostaglandin (PG) biosynthesis, is overexpressed in around 75% of human carcinomas including those of the pancreas. METHODS: The pathologic changes of transgenic mouse pancreas with keratin 5-promoter-driven expression and activity of COX-2 were characterized. RESULTS: Aberrant expression of COX-2 in a few ductal cells and COX-2-mediated PG synthesis in the transgenic mice resulted in keratin 19- and mucin-positive intraductal papillary mucinous neoplasm- and pancreatic intraepithelial neoplasia-like structures, characterized by an increased proliferation index and serous cystadenomas. Moreover, Ras activation was enhanced and the HER-2/Neu receptor was overexpressed. Loss of acini, fibrosis, and inflammation were pronounced. Feeding a COX-2-selective inhibitor to the transgenic mice suppressed the accumulation of PG and the phenotype. The changes resemble the human disease in which COX-2 was overexpressed consistently. CONCLUSIONS: We present strong evidence for a causal relationship between aberrant COX-2 overexpression and COX-2-mediated PG synthesis and the development of serous cystadenoma, intraductal papillary mucinous, and pancreatic intraepithelial neoplasms. This model offers the unique possibility of identifying molecular pathways leading to the formation and malignant progression of the various types of preinvasive lesions of pancreatic adenocarcinomas that show different dismal outcomes.


Assuntos
Carcinoma Ductal Pancreático/genética , Ciclo-Oxigenase 2/genética , Regulação Neoplásica da Expressão Gênica , Queratinas/genética , Neoplasias Pancreáticas/genética , Animais , Biópsia por Agulha , Carcinoma Ductal Pancreático/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprosta/análise , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Genes Neoplásicos , Genes ras , Immunoblotting , Imuno-Histoquímica , Queratinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/patologia , Probabilidade , Regiões Promotoras Genéticas/genética
15.
Am J Pathol ; 168(4): 1354-64, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16565508

RESUMO

Homeostasis of stratified epithelia, such as the epidermis of the skin, is a sophisticated process that represents a tightly controlled balance between proliferation and differentiation. Alterations of this balance are associated with common human diseases including cancer. Here, we report the cloning of a novel cDNA sequence, from mouse back skin, that is induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and codes for a hitherto unknown aspartic proteinase-like protein (Taps). Taps represents a potential AP-1 target gene because TPA-induced expression in epidermal keratinocytes critically depends on c-Fos, and co-treatment with dexamethasone, a potent inhibitor of AP-1-mediated gene regulation, resulted in impaired activation of Taps expression. Taps mRNA and protein are restricted to stratified epithelia in mouse embryos and adult tissues, implicating a crucial role for this aspartic proteinase-like gene in differentiation and homeostasis of multilayered epithelia. During chemically induced carcinogenesis, transient elevation of Taps mRNA and protein levels was detected in benign skin tumors. However, its expression is negatively associated with dedifferentiation and malignant progression in squamous cell carcinomas of the skin. Similar expression was observed in squamous skin tumors of patients, suggesting that detection of Taps levels represents a novel strategy to discriminate the progression state of squamous skin cancers.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/biossíntese , Ácido Aspártico Endopeptidases/genética , Carcinoma de Células Escamosas/induzido quimicamente , Diferenciação Celular , Linhagem Celular Tumoral , Dexametasona/farmacologia , Epiderme/embriologia , Epiderme/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Genes fos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Pele/embriologia , Pele/patologia , Neoplasias Cutâneas/induzido quimicamente , Acetato de Tetradecanoilforbol , Fator de Transcrição AP-1/antagonistas & inibidores , Fator de Transcrição AP-1/metabolismo
16.
J Biol Chem ; 280(44): 36633-41, 2005 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-16129665

RESUMO

Mammalian lipoxygenases (LOXs) are categorized with respect to their positional specificity of arachidonic acid oxygenation. Site-directed mutagenesis identified sequence determinants for the positional specificity of these enzymes, and a critical amino acid for the stereoselectivity was recently discovered. To search for sequence determinants of murine (12R)-LOX, we carried out multiple amino acid sequence alignments and found that Phe(390), Gly(441), Ala(455), and Val(631) align with previously identified positional determinants of S-LOX isoforms. Multiple site-directed mutagenesis studies on Phe(390) and Ala(455) did not induce specific alterations in the reaction specificity, but yielded enzyme species with reduced specific activities and stereo random product patterns. Mutation of Gly(441) to Ala, which caused drastic alterations in the reaction specificity of other LOX isoforms, failed to induce major alterations in the positional specificity of mouse (12R)-LOX, but markedly modified the enantioselectivity of the enzyme. When Val(631), which aligns with the positional determinant Ile(593) of rabbit 15-LOX, was mutated to a less space-filling residue (Ala or Gly), we obtained an enzyme species with augmented catalytic activity and specifically altered reaction characteristics (major formation of chiral (11R)-hydroxyeicosatetraenoic acid methyl ester). The importance of Val(631) for the stereo control of murine (12R)-LOX was confirmed with other substrates such as methyl linoleate and 20-hydroxyeicosatetraenoic acid methyl ester. These data identify Val(631) as the major sequence determinant for the specificity of murine (12R)-LOX. Furthermore, we conclude that substrate fatty acids may adopt different catalytically productive arrangements at the active site of murine (12R)-LOX and that each of these arrangements may lead to the formation of chiral oxygenation products.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Araquidonato 12-Lipoxigenase/química , Araquidonato 12-Lipoxigenase/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Mutagênese Sítio-Dirigida , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Araquidonato 12-Lipoxigenase/genética , Sítios de Ligação , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Estereoisomerismo , Especificidade por Substrato , Valina
17.
Hum Mutat ; 26(4): 351-61, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16116617

RESUMO

Autosomal-recessive congenital ichthyosis (ARCI) is a clinically and genetically heterogeneous group of severe hereditary keratinization disorders characterized by intense scaling of the whole integument, and differences in color and shape. It is often associated with erythema. To date, six loci for ARCI have been mapped. Mutations in ALOXE3 and ALOX12B on chromosome 17p13, which code for two different epidermal lipoxygenases, were recently found in patients with ichthyosiform erythroderma from Turkey, France, and North Africa. Here we describe molecular and clinical findings in 17 families with ARCI originating from Central Europe, Turkey, and the Indian subcontinent, with mutations in ALOXE3 or ALOX12B. We identified 11 novel point mutations in ALOX12B (one nonsense mutation and 10 missense mutations) and four different inactivating mutations in ALOXE3. The gene products of ALOX12B and ALOXE3, the epidermal lipoxygenases 12R-LOX and eLOX3, respectively, are preferentially synthesized in the skin. They act in sequence to convert arachidonic acid via 12(R)-HPETE to the corresponding epoxyalcohol, 8(R)-hydroxy-11(R),12(R)-epoxyeicosatrienoic acid. To assess the impairment of enzyme activity, we expressed the mutated genes in vitro and determined the activity of the recombinant proteins toward their genuine substrates. All but one of the recombinant mutants were enzymatically inactive. The characterization of disease-causing mutations in ALOXE3 and ALOX12B and the resulting ARCI phenotypes did not result in clear diagnostic criteria; however, we found a first correlation between the genetic findings and the clinical presentation of ichthyosis.


Assuntos
Genes Recessivos , Eritrodermia Ictiosiforme Congênita/metabolismo , Lipoxigenase/fisiologia , Mutação Puntual , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/fisiologia , Catálise , Cromatografia Líquida de Alta Pressão , Células Epidérmicas , Epiderme/enzimologia , Epiderme/metabolismo , Homozigoto , Humanos , Eritrodermia Ictiosiforme Congênita/genética , Lipoxigenase/genética , Lipoxigenase/metabolismo , Perda de Heterozigosidade , Repetições de Microssatélites , Fenótipo , Grupos Populacionais/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Am J Pathol ; 167(1): 243-53, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15972968

RESUMO

Malignant transformation of mouse skin by tumor promoters and chemical carcinogens, such as the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), is a multistage process leading to the formation of squamous cell carcinomas. It has been shown that mice lacking the AP-1 family member c-Fos exhibit an impaired transition from benign to malignant skin tumors. Here, we demonstrate enhanced expression of the small Ras-related GTPase Rab11a after short-term TPA treatment of mouse back skin. Expression of Rab11a in vivo and in vitro critically depended on c-Fos, because TPA application to the back skin of c-Fos-deficient mice and to mouse embryonic fibroblasts did not induce Rab11a mRNA or protein expression. Moreover, dexamethasone, which is a potent inhibitor of AP-1-mediated transactivation that exhibits anti-inflammatory and anti-tumor promoting activities, inhibited TPA-induced expression of Rab11a. Within the Rab11a gene promoter, we identified a functional AP-1 binding element that exhibited elevated c-Fos binding activity after TPA treatment of keratinocytes. Enhanced expression was not restricted to chemically induced mouse skin tumors but was also found in tumor specimens derived from patients with epithelial skin tumors. These data identify Rab11a as a novel, tumor-associated c-Fos/AP-1 target and may point to an as yet unrecognized function of Rab11a in the development of skin cancer.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neoplasias Cutâneas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Northern Blotting , Western Blotting , Carcinógenos/toxicidade , Células Cultivadas , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Imunofluorescência , Humanos , Hibridização In Situ , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acetato de Tetradecanoilforbol/toxicidade , Proteínas rab de Ligação ao GTP/genética
19.
Cancer Res ; 65(5): 1808-13, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15753378

RESUMO

The inducible form of cyclooxygenase (COX), COX-2, is up-regulated in many epithelial cancers and its prostaglandin products increase proliferation, enhance angiogenesis, and inhibit apoptosis in several tissues. Pharmacologic inhibition and genetic deletion studies showed a marked reduction of tumor development in colon and skin. COX-2 has also been strongly implicated in urinary bladder cancer primarily by studies with nonselective COX- and COX-2-selective inhibitors. We now show that forced expression of COX-2, under the control of a keratin 5 promoter, is sufficient to cause transitional cell hyperplasia (TCH) in 17% and 75% of the heterozygous and homozygous transgenic lines, respectively, in an age-dependent manner. TCH was strongly associated with inflammation, primarily nodules of B lymphocytes; some T cells and macrophage infiltration were also observed. Additionally, transitional cell carcinoma was observed in approximately 10% of the K5.COX-2 transgenic mice; no TCH or transitional cell carcinoma was observed in wild-type bladders. Immunohistochemistry for vascular proliferation and vascular endothelial growth factor showed significant increases above that in wild-type urinary bladders. Our results suggest that overexpression of COX-2 is sufficient to cause hyperplasia and carcinomas in the urinary bladder. Therefore, inhibition of COX-2 should continue to be pursued as a potential chemopreventive and therapeutic strategy.


Assuntos
Carcinoma de Células de Transição/enzimologia , Hiperplasia/enzimologia , Queratinas/genética , Regiões Promotoras Genéticas , Prostaglandina-Endoperóxido Sintases/metabolismo , Neoplasias da Bexiga Urinária/enzimologia , Animais , Linfócitos B , Carcinoma de Células de Transição/genética , Proliferação de Células , Ciclo-Oxigenase 2 , Regulação Enzimológica da Expressão Gênica , Humanos , Hiperplasia/genética , Inflamação , Queratina-15 , Queratina-5 , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Estadiamento de Neoplasias , Prostaglandina-Endoperóxido Sintases/genética , Linfócitos T , Transcrição Gênica , Bexiga Urinária/enzimologia , Neoplasias da Bexiga Urinária/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Am J Pathol ; 166(2): 575-84, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15681840

RESUMO

Expression and pharmacological studies support a contribution of cyclooxygenase (COX)-2 to mammary gland tumorigenesis. In a recent transgenic study, mouse mammary tumor virus promoter-driven COX-2 expression in mouse mammary glands was shown to result in alveolar hyperplasia, dysplasia, and carcinomas after multiple rounds of pregnancy and lactation. In the study presented here, the effects of constitutive COX-2 overexpression in keratin 5-positive myoepithelial and luminal cells, driven by the keratin 5 promoter in a hormone-independent manner, was investigated. In nulliparous female mice, aberrant COX-2 overexpression correlated with increased prostaglandin (PG) E(2) levels and caused cystic duct dilatations, adenosis, and fibrosis whereas carcinomas developed rarely. This phenotype depended on COX-2-mediated PGE(2) synthesis and correlated with increased expression of proliferation-associated Ki67 in epithelial cells. No changes in the expression of apoptosis-related Bcl-2, caspase 3, or p53 were observed. Hyperproliferation of the mammary gland epithelial cells was associated with increased aromatase mRNA levels in this tissue. The spontaneous pathologies bear analogies to the human breast with fibrocystic changes. Intriguingly, strong COX-2 expression was observed in fibrocystic changes, as compared to low expression in normal breast epithelium. These results show for the first time that aberrant COX-2 expression contributes to the development of fibrocystic changes (FC), indicating that COX-2 and COX-2-mediated PG synthesis represent potential targets for the therapy of this most frequent benign disorder of the human breast.


Assuntos
Ducto Cístico/patologia , Queratinas/genética , Glândulas Mamárias Animais/metabolismo , Regiões Promotoras Genéticas , Prostaglandina-Endoperóxido Sintases/biossíntese , Prostaglandina-Endoperóxido Sintases/fisiologia , Animais , Biópsia , Mama/patologia , Caspase 3 , Caspases/biossíntese , Proliferação de Células , Ciclo-Oxigenase 2 , Ensaio de Imunoadsorção Enzimática , Epitélio/patologia , Feminino , Fibrose , Citometria de Fluxo , Humanos , Immunoblotting , Imuno-Histoquímica , Queratina-15 , Queratina-5 , Antígeno Ki-67/biossíntese , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes , Proteína Supressora de Tumor p53/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA