Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3758, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768409

RESUMO

For most neuroimaging questions the range of possible analytic choices makes it unclear how to evaluate conclusions from any single analytic method. One possible way to address this issue is to evaluate all possible analyses using a multiverse approach, however, this can be computationally challenging and sequential analyses on the same data can compromise predictive power. Here, we establish how active learning on a low-dimensional space capturing the inter-relationships between pipelines can efficiently approximate the full spectrum of analyses. This approach balances the benefits of a multiverse analysis without incurring the cost on computational and predictive power. We illustrate this approach with two functional MRI datasets (predicting brain age and autism diagnosis) demonstrating how a multiverse of analyses can be efficiently navigated and mapped out using active learning. Furthermore, our presented approach not only identifies the subset of analysis techniques that are best able to predict age or classify individuals with autism spectrum disorder and healthy controls, but it also allows the relationships between analyses to be quantified.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
2.
Sci Rep ; 11(1): 15746, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344910

RESUMO

Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer's disease (n = 206) and mild cognitive impairment (n = 354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. To promote open science, we are making all scripts and the trained models available to the wider research community.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Aprendizado de Máquina , Modelos Estatísticos , Redes Neurais de Computação , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/epidemiologia , Estudos de Coortes , Estudos Transversais , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA