Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.264
Filtrar
1.
J Environ Manage ; 362: 121293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833923

RESUMO

Soil acidification induced by reactive nitrogen (N) inputs is a major environmental issue in grasslands, as it lowers the acid neutralizing capacity (ANC). The specific impacts of different N compound forms on ANC remain unclear. Grassland management practices like mowing and grazing can remove a considerable amount of soil N and other nutrients, potentially mitigating soil acidification by removing N from the ecosystem or aggravating it by removing base cations. However, empirical evidence regarding the joint effects of adding different forms of N compounds and mowing on ANC changes in different-sized soil aggregates is still lacking. This study aimed to address this knowledge gap by examining the effects of three N compounds (urea, ammonium nitrate, and ammonium sulfate) combined with mowing (mown vs. unmown) on soil ANC in different soil aggregate sizes (>2000 µm, 250-2000 µm, and <250 µm) through a 6-year field experiment in Inner Mongolia grasslands. We found that the average decline in soil ANC caused by ammonium sulfate (AS) addition (-78.9%) was much greater than that by urea (-25.0%) and ammonium nitrate (AN) (-52.1%) as compared to control. This decline was attributed to increased proton (H+) release from nitrification and the leaching of exchangeable Ca2+ and Mg2+. Mowing aggravated the adverse effects of urea and AN on ANC, primarily due to the reduction in soil organic matter (SOM) contents and the removal of exchangeable Ca2+, K+, and Na + via plant biomass harvest. This pattern was consistent across all aggregate fractions. The lack of variation in soil ANC among different soil aggregate fractions is likely due to the contrasting trend in the distribution of exchangeable Ca2+ and Mg2+. Specifically, the concentration of exchangeable Ca2+ increased with increasing aggregate size, while the opposite was true for that of exchangeable Mg2+. These findings underscore the importance of considering the forms of N compounds when assessing the declines of ANC induced by N inputs, which also calls for an urgent need to reduce N emissions to ensure the sustainable development of the meadow ecosystems.


Assuntos
Pradaria , Nitrogênio , Solo , Solo/química , Nitrogênio/análise , Nitratos/análise , Ecossistema
2.
J Am Coll Emerg Physicians Open ; 5(3): e13190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38827500

RESUMO

Objective: To analyze the risk factors associated with intubated critically ill patients in the emergency department (ED) and develop a prediction model by machine learning algorithms. Methods: This study was conducted in an academic tertiary hospital in Hangzhou, China. Critically ill patients admitted to the ED were retrospectively analyzed from May 2018 to July 2022. The demographic characteristics, distribution of organ dysfunction, parameters for different organs' examination, and status of mechanical ventilation were recorded. These patients were assigned to the intubation and non-intubation groups according to ventilation support. We used the eXtreme Gradient Boosting (XGBoost) algorithm to develop the prediction model and compared it with other algorithms, such as logistic regression, artificial neural network, and random forest. SHapley Additive exPlanations was used to analyze the risk factors of intubated critically ill patients in the ED. Results: Of 14,589 critically ill patients, 10,212 comprised the training group and 4377 comprised the test group; 2289 intubated patients were obtained from the electronic medical records. The mean age, mean scores of vital signs, parameters of different organs, and blood oxygen examination results differed significantly between the two groups (p < 0.05). The white blood cell count, international normalized ratio, respiratory rate, and pH are the top four risk factors for intubation in critically ill patients. Based on the risk factors in different predictive models, the XGBoost model showed the highest area under the receiver operating characteristic curve (0.84) for predicting ED intubation. Conclusions: For critically ill patients in the ED, the proposed model can predict potential intubation based on the risk factors in the clinically predictive model.

3.
J Ethnopharmacol ; : 118438, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848972

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperlipidemia as a major health issue has attracted much public attention. As a geographical indication product of China, Liupao tea (LPT) is a typical representative of traditional Chinese dark tea that has shown good potential in regulating glucose and lipid metabolism. LPT has important medicinal value in hyperlipidemia prevention. However, the active ingredients and metabolic mechanisms by which LPT alleviates hyperlipidemia remain unclear. AIM OF THE STUDY: This study aimed to systematically investigate the metabolic mechanisms and active ingredients of LPT extract in alleviating hyperlipidemia. MATERIALS AND METHODS: Firstly, we developed a mouse model of hyperlipidemia to study the pharmacodynamics of LPT. Subsequently, network pharmacology and molecular docking were performed to predict the potential key active ingredients and core targets of LPT against hyperlipidemia. LC-MS/MS was used to validate the identity of key active ingredients in LPT with chemical standards. Finally, the effect and metabolic mechanisms of LPT extract in alleviating hyperlipidemia were investigated by integrating metabolomic, lipidomic, and gut microbiome analyses. RESULTS: Results showed that LPT extract effectively improved hyperlipidemia by suppressing weight gain, remedying dysregulation of glucose and lipid metabolism, and reducing hepatic damage. Network pharmacology analysis and molecular docking suggested that four potential active ingredients and seven potential core targets were closely associated with roles for hyperlipidemia treatment. Ellagic acid, catechin, and naringenin were considered to be the key active ingredients of LPT alleviating hyperlipidemia. Additionally, LPT extract modulated the mRNA expression levels of Fxr, Cyp7a1, Cyp8b1, and Cyp27a1 associated with bile acid (BA) metabolism, mitigated the disturbances of bile acid (BA) and glycerophospholipid (GP) metabolism in hyperlipidemia mice. Combining fecal microbiota transplantation and correlation analysis, LPT extract effectively improved species diversity and abundance of gut microbiota, particularly the BA and GP metabolism-related gut microbiota, in the hyperlipidemia mice. CONCLUSIONS: LPT extract ameliorated hyperlipidemia by modulating GP and BA metabolism by regulating Lactobacillus and Dubosiella, thereby alleviating hyperlipidemia. Three active ingredients of LPT served as the key factors in exerting an improvement on hyperlipidemia. These findings provide new insights into the active ingredients and metabolic mechanisms of LPT in improving hyperlipidemia, suggesting that LPT can be used to prevent and therapeutic hyperlipidemia.

4.
Gene ; : 148595, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38795857

RESUMO

Beef and dairy products are rich in protein and amino acids, making them highly nutritious for human consumption. The increasing use of gene editing technology in agriculture has paved the way for genetic improvement in cattle breeding via the development of the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system. Gene sequences are artificially altered and employed in the pursuit of improving bovine breeding research through targeted knockout, knock-in, substitution, and mutation methods. This review offers a comprehensive analysis of the advancements in gene editing technology and its diverse applications in enhancing both quantitative and qualitative traits across livestock. These applications encompass areas such as meat quality, milk quality, fertility, disease resistance, environmental adaptability, sex control, horn development, and coat colour. Furthermore, the review considers prospective ideas and insights that may be employed to refine breeding traits, enhance editing efficiency, and navigate the ethical considerations associated with these advancements. The review's focus on improving the quality of beef and milk is intended to enhance the economic viability of these products. Furthermore, it constitutes a valuable resource for scholars and researchers engaged in the fields of cattle genetic improvement and breeding.

5.
J Biomed Sci ; 31(1): 55, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802791

RESUMO

BACKGROUND: Radioresistance is a key clinical constraint on the efficacy of radiotherapy in lung cancer patients. REV1 DNA directed polymerase (REV1) plays an important role in repairing DNA damage and maintaining genomic stability. However, its role in the resistance to radiotherapy in lung cancer is not clear. This study aims to clarify the role of REV1 in lung cancer radioresistance, identify the intrinsic mechanisms involved, and provide a theoretical basis for the clinical translation of this new target for lung cancer treatment. METHODS: The effect of targeting REV1 on the radiosensitivity was verified by in vivo and in vitro experiments. RNA sequencing (RNA-seq) combined with nontargeted metabolomics analysis was used to explore the downstream targets of REV1. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify the content of specific amino acids. The coimmunoprecipitation (co-IP) and GST pull-down assays were used to validate the interaction between proteins. A ubiquitination library screening system was constructed to investigate the regulatory proteins upstream of REV1. RESULTS: Targeting REV1 could enhance the radiosensitivity in vivo, while this effect was not obvious in vitro. RNA sequencing combined with nontargeted metabolomics revealed that the difference result was related to metabolism, and that the expression of glycine, serine, and threonine (Gly/Ser/Thr) metabolism signaling pathways was downregulated following REV1 knockdown. LC-MS/MS demonstrated that REV1 knockdown results in reduced levels of these three amino acids and that cystathionine γ-lyase (CTH) was the key to its function. REV1 enhances the interaction of CTH with the E3 ubiquitin ligase Rad18 and promotes ubiquitination degradation of CTH by Rad18. Screening of the ubiquitination compound library revealed that the ubiquitin-specific peptidase 9 X-linked (USP9X) is the upstream regulatory protein of REV1 by the ubiquitin-proteasome system, which remodels the intracellular Gly/Ser/Thr metabolism. CONCLUSION: USP9X mediates the deubiquitination of REV1, and aberrantly expressed REV1 acts as a scaffolding protein to assist Rad18 in interacting with CTH, promoting the ubiquitination and degradation of CTH and inducing remodeling of the Gly/Ser/Thr metabolism, which leads to radioresistance. A novel inhibitor of REV1, JH-RE-06, was shown to enhance lung cancer cell radiosensitivity, with good prospects for clinical translation.


Assuntos
Neoplasias Pulmonares , Nucleotidiltransferases , Tolerância a Radiação , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Linhagem Celular Tumoral , Camundongos , Animais , DNA Polimerase Dirigida por DNA
6.
Viruses ; 16(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793564

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that causes severe abortions in sows and high piglet mortality, resulting in huge economic losses to the pig industry worldwide. The emerging and novel PRRSV isolates are clinically and biologically important, as there are likely recombination and pathogenic differences among PRRSV genomes. Furthermore, the NADC34-like strain has become a major epidemic strain in some parts of China, but the characterization and pathogenicity of the latest strain in Inner Mongolia have not been reported in detail. In this study, an NADC34-like strain (CHNMGKL1-2304) from Tongliao City, Inner Mongolia was successfully isolated and characterized, and confirmed the pathogenicity in pigs. The phylogenetic tree showed that this strain belonged to sublineage 1.5 and had high homology with the strain JS2021NADC34. There is no recombination between CHNMGKL1-2304 and any other domestic strains. Animal experiments show that the CHNMGKL1-2304 strain is moderately virulent to piglets, which show persistent fever, weight loss and high morbidity but no mortality. The presence of PRRSV nucleic acids was detected in both blood, tissues, nasal and fecal swabs. In addition, obvious pathological changes and positive signals were observed in lung, lymph node, liver and spleen tissues when subjected to hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). This report can provide a basis for epidemiological investigations and subsequent studies of PRRSV.


Assuntos
Genoma Viral , Filogenia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Vírus da Síndrome Respiratória e Reprodutiva Suína/isolamento & purificação , Vírus da Síndrome Respiratória e Reprodutiva Suína/classificação , China , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Virulência , Evolução Molecular
7.
Pharmacol Res ; 205: 107236, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797358

RESUMO

The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.

8.
Nutr Metab (Lond) ; 21(1): 28, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796446

RESUMO

Metabolic syndrome (MetS) is a cluster of clinical syndromes that is closely associated with an elevated risk of developing atherosclerotic cardiovascular disease. In a series of animal experiments and clinical trials, crocus sativus and its component crocin have demonstrated promising hypoglycemic effects. However, there is currently insufficient evidence regarding their impact on cardiometabolic parameters. Our study aimed to assess the impact of Crocus sativus and crocin on glycemic control in individuals with metabolic syndrome and associated disorders, as well as their potential effects on improving cardiometabolic parameters. We searched Cochrane Library, PubMed, Embase, and Web of Science databases to ascertain the pertinent randomized controlled trials (RCTs) until December 30, 2023. Q-test and I2 statistics were utilized to evaluate heterogeneity among the included studies. Data were merged using a random-effects model and presented as (WMD) with a 95% confidence interval (CI). The current comprehensive review and meta-analysis, encompassing 13 RCTs involving a total of 840 patients diagnosed with metabolic syndrome and associated disorders, demonstrates that Crocus sativus was superior to placebo on Hemoglobin A1c(HbA1c) (WMD: -0.31;95% CI [-0.44,-0.19]. P = 0.002) and systolic blood pressure(SBP) (WMD:-7.49;95% CI [-11.67,-3.30]. P = 0.99) respectively. Moreover, Crocus sativus improved fasting blood glucose (FBG) (WMD:-7.25;95% CI [-11.82, -2.57]. P = 0.002) when used crocin and on other chronic diseases. Crocus sativus reduced the total cholesterol (TC) among the metabolic syndromepatients (WMD:-13.64;95%CI [-26.26, -1.03]. P = 0.03). We demonstrated that Crocus sativus exerts beneficial effects on glycemic control and cardiometabolic parameters in individuals with metabolic syndrome and related disorders.

9.
mBio ; 15(6): e0064024, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38727246

RESUMO

Interleukin-18 binding protein (IL-18BP), a natural regulator molecule of the pro-inflammatory cytokine interleukin-18 (IL-18), plays an important role in regulating the expression of the cellular immunity factor interferon-γ (IFN-γ). In a previous RNA-seq analysis of porcine alveolar macrophages (PAM) infected with the TIM and TJ strains of porcine reproductive and respiratory syndrome virus (PRRSV), we unexpectedly found that the mRNA expression of porcine interleukin 18-binding protein (pIL-18BP) in PAM cells infected with the TJM strain was significantly higher than that infected with the TJ strain. Studies have shown that human interleukin-18 binding protein (hIL-18bp) plays an important role in regulating cellular immunity in the course of the disease. However, there is a research gap on pIL-18BP. At the same time, PRRSV infection in pigs triggers weak cellular immune response problems. To explore the expression and the role of pIL-18BP in the cellular immune response induced by PRRSV, we strived to acquire the pIL-18BP gene from PAM or peripheral blood mononuclear cell (PBMC) with RT-PCR and sequencing. Furthermore, pIL-18BP and pIL-18 were both expressed prokaryotically and eukaryotically. The colocalization and interaction based on recombinant pIL-18BP and pIL-18 on cells were confirmed in vitro. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in pigs with different PRRSV infection states to interpret the biological function of pIL-18BP in vivo. The results showed there were five shear mutants of pIL-18BP. The mutant with the longest coding region was selected for subsequent functional validation. First, it was demonstrated that TJM-induced pIL-18BP mRNA expression was higher than that of TJ. A direct interaction between pIL-18BP and pIL-18 was confirmed through fluorescence colocalization, bimolecular fluorescent complimentary (BIFC), and co-immunoprecipitation (CO-IP). pIL-18BP also can regulate pIFN-γ mRNA expression. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in different PRRSV infection states. Surprisingly, both mRNA and protein expression of pIL-18 were suppressed. These findings fill the gap in understanding the roles played by pIL-18BP in PRRSV infection and provide a foundation for further research.IMPORTANCEPRRSV-infected pigs elicit a weak cellular immune response and the mechanisms of cellular immune regulation induced by PRRSV have not yet been fully elucidated. In this study, we investigated the role of pIL-18BP in PRRSV-induced immune response referring to the regulation of human IL-18BP to human interferon-gamma (hIFN-γ). This is expected to be used as a method to enhance the cellular immune response induced by the PRRSV vaccine. Here, we mined five transcripts of the pIL-18BP gene and demonstrated that it interacts with pIL-18 and regulates pIFN-γ mRNA expression. Surprisingly, we also found that both mRNA and protein expression of pIL-18 were suppressed under different PRRSV strains of infection status. These results have led to a renewed understanding of the roles of pIL-18BP and pIL-18 in cellular immunity induced by PRRSV infection, which has important implications for the prevention and control of PRRS.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , RNA Mensageiro , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Macrófagos Alveolares/virologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Interações Hospedeiro-Patógeno/genética , Interferon gama/genética , Interferon gama/metabolismo , Interferon gama/imunologia , Transcrição Gênica
10.
Chembiochem ; : e202400229, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700379

RESUMO

Photodynamic therapy (PDT) is a newly emerged strategy for disease treatment. One challenge of the application of PDT drugs is the side-effect caused by the non-specificity of the photosensitive molecules. Most of the photosensitizers may invade not only the pathogenic cells but also the normal cells. In recent, people tried to use special cargoes to deliver the drugs into target cells. DNA nanoflowers (NFs) are a kind of newly-emerged nanomaterial which constructed through DNA rolling cycle amplification (RCA) reaction. It is reported that the DNA NFs were suitable materials which have been widely applied as nanocargos for drug delivery in cancer chemotherapeutic treatment. In this paper, we have introduced a new multifunctional DNA NF which could be prepared through an one-pot RCA reaction. This proposed DNA NF contained a versatile AS1411 G-quadruplex moiety, which plays key roles not only for specific recognition of cancer cells but also for near-infrared ray based photodynamic therapy when conjugating with a special porphyrin molecule. We demonstrated that the DNA NF showed good selectivity toward cancer cells, leading to highly efficient photo-induced cytotoxicity. Moreover, the in vivo experiment results suggested this DNA NF is a promising nanomaterial for clinical PDT.

11.
Plant Cell Environ ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725360

RESUMO

Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil-plant-atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century. This review traces the development of the two disciplines, from their respective origins in engineering and ecology, their largely independent growth and maturation, and the eventual development of common conceptual and quantitative frameworks. This common ground has allowed explicit coupling of the disciplines to better understand plant function. Case studies both illuminate the limitations of the disciplines working in isolation, and reveal the exciting possibilities created by consilience between the disciplines. The histories of the two disciplines suggest opportunities for new advances will arise from sharing methodologies, working across multiple levels of complexity, and leveraging new observational technologies. Practically, these exchanges can be supported by creating shared scientific spaces. This review argues that consilience and collaboration are essential for robust and evidence-based predictions and policy responses under global change.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38742391

RESUMO

Vertical observations of atmospheric pollutants play crucial roles in a comprehensive understanding of the distribution characteristics and transport of atmospheric pollutants. A hexacopter uncrewed aerial vehicle equipped with miniature monitors was employed to measure the vertical distribution of atmospheric pollutants within a height of 1000 m at a rural site in Xi'an, China, in 2021. The concentrations of carbon monoxide (CO) and particulate matter (PM) showed generally decreasing trends with increasing height. The ozone (O3) concentration showed a general increasing trend with height followed by a gradual decreasing trend. Vertical decrements of PM2.5 and CO from 0 to 1000 m were significantly (p < 0.05) lower on observation days during summer (14.0 ± 8.1 µg m-3 and 8.7 ± 6.6 ppb, respectively), compared with those in winter (78.3 ± 14.1 µg m-3 and 34.8 ± 17.3 ppb, respectively). The horizontal transport of PM and CO mostly occurred in the morning and at night during winter observations at an altitude of 400-500 m. During the winter haze, the PM and CO profile concentrations below 500 m increased substantially with the decrease in the height of the thermal inversion layer. Vertical O3 transportation was observed in the afternoon and evening during summer, and a ∼37.7% (11.6 ppb) increase in ground-level O3 was observed in relation to vertical transport from the upper atmosphere. The results provide insights into the vertical distribution and transport of atmospheric pollutants in rural areas near cities.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38662533

RESUMO

Aquatic actuators based on the light-to-work conversion are of paramount significance for the development of cutting-edge fields including robots, micromachines, and intelligent systems. Herein, we report the design and synthesis of near-infrared light-driven hydrogel actuators through loading with lightweight polydopamine-modified hollow glass microspheres (PDA-HGMPs) into responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogels. These PDA-HGMPs can not only function as an excellent photothermal agent but also accelerate the swelling/desewlling of hydrogels due to their reconstruction for polymer gel skeleton, which speeds up the response rate of hydrogel actuators. The resulting hydrogel actuator shows controlled movements under light illumination, including complex self-propellant and floating/sinking motions. As the proof-of-concept demonstrations, a self-sensing robot is conceptualized by integrating the PDA-HGMP-containing hydrogel actuator with an ultrathin and miniature pressure sensor. Hopefully, this work can offer some important insights into the research of smart aquatic soft actuators, paving the way to the potential applications in emerging fields including micromachines and intelligent systems.

14.
Plant Cell Rep ; 43(5): 125, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647720

RESUMO

KEY MESSAGE: The interaction network and pathway map uncover the potential crosstalk between sugar and hormone metabolisms as a possible reason for leaf senescence in P. ternata. Pinellia ternata, an environmentally sensitive medicinal plant, undergoes leaf senescence twice a year, affecting its development and yield. Understanding the potential mechanism that delays leaf senescence could theoretically decrease yield losses. In this study, a typical senescent population model was constructed, and an integrated analysis of transcriptomic and metabolomic profiles of P. ternata was conducted using two early leaf senescence populations and two stay-green populations. The result showed that two key gene modules were associated with leaf senescence which were mainly enriched in sugar and hormone signaling pathways, respectively. A network constructed by unigenes and metabolisms related to the obtained two pathways revealed that several compounds such as D-arabitol and 2MeScZR have a higher significance ranking. In addition, a total of 130 hub genes in this network were categorized into 3 classes based on connectivity. Among them, 34 hub genes were further analyzed through a pathway map, the potential crosstalk between sugar and hormone metabolisms might be an underlying reason of leaf senescence in P. ternata. These findings address the knowledge gap regarding leaf senescence in P. ternata, providing candidate germplasms for molecular breeding and laying theoretical basis for the realization of finely regulated cultivation in future.


Assuntos
Regulação da Expressão Gênica de Plantas , Metabolômica , Pinellia , Reguladores de Crescimento de Plantas , Folhas de Planta , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Pinellia/genética , Pinellia/metabolismo , Pinellia/fisiologia , Pinellia/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma/genética , Senescência Vegetal/genética , Perfilação da Expressão Gênica , Açúcares/metabolismo , Metaboloma/genética , Redes Reguladoras de Genes , Metabolismo dos Carboidratos/genética
15.
Anim Reprod Sci ; 264: 107460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564886

RESUMO

The incidence of bovine endometritis, which has a negative impact on the reproduction of dairy cows, has been recently increasing. In this study, the differential markers and metabolites of healthy cows and cows with endometritis were analyzed by measuring blood biochemical indicators and immune factors using biochemical and enzyme-linked immunosorbent assay kits combined with nontargeted metabolomics. The LC-QTOF platform was used to evaluate the serum metabolomics of healthy cows and cows with endometritis after 21-27 days of calving. The results showed that glucose, free fatty acid, calcium, sodium, albumin, and alanine aminotransferase levels were significantly lower in the serum of cows with endometritis than in healthy cows (P < 0.05). However, the serum potassium, interleukin-1, interleukin-6, and tumor necrosis factor levels were significantly higher in cows with endometritis (P < 0.05). In addition, the serum metabolome data analysis of the two groups showed that the expression of 468 metabolites was significantly different (P < 0.05), of which 291 were upregulated and 177 were downregulated. These metabolites were involved in 78 metabolic pathways, including amino acid, nucleotide, carbohydrate, lipid, and vitamin metabolism pathways; signal transduction pathways, and other biological pathways. Taken together, negative energy balance and immune activation, which are related to local abnormalities in amino acid, lipid, and carbohydrate metabolism, were the important causes of endometritis in dairy cows. Metabolites such as glucose, carnosine, dehydroascorbic acid, L-malic acid, tetrahydrofolic acid, and UDP-glucose may be used as key indicators in the hematological diagnosis and treatment of endometritis in dairy cows.


Assuntos
Doenças dos Bovinos , Endometrite , Metabolômica , Feminino , Bovinos , Animais , Endometrite/veterinária , Endometrite/sangue , Endometrite/metabolismo , Doenças dos Bovinos/sangue , Doenças dos Bovinos/metabolismo , Biomarcadores/sangue
16.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1467-1473, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621930

RESUMO

Traditional Chinese medicine(TCM) syndrome-based efficacy is an evaluation index which is unique to TCM and can reflect the advantages of TCM. The development of the methods and measurement tools for evaluating TCM syndrome-based efficacy can provide objective and quantitative evidence for the clinical efficacy evaluation of TCM and the development of new Chinese medicine preparations, being the exploration direction of innovative methods and technologies for evaluating TCM efficacy. The conventional evaluation methods are subjective and limited to the mitigation of symptoms and the improvement of physical signs, which make it difficult to form a unified evaluation standard. In addition, the evaluation methods lack unity, objectivity, and quantitative research. The scientific connotation, evaluation ideas and methods, and key technologies of the evaluation for the therapeutic effect on syndromes remain unclear, which leads to diverse evaluation modes, methods, and indexes. The syndrome-based efficacy scale provides a new idea for the objective quantification and standardization of TCM syndromes. This review systematically summarizes the methods and problems, introduces the research progress in the evaluation scales, and puts forward some thoughts on the characteristics of TCM syndrome-based efficacy evaluation, aiming to provide insights for the research in this field.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Tecnologia , Síndrome , Medicamentos de Ervas Chinesas/uso terapêutico
17.
Adv Mater ; : e2401875, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598692

RESUMO

The practical application of flexible and stretchable electronics is significantly influenced by their thermal and chemical stability. Elastomer substrates and encapsulation, due to their soft polymer chains and high surface-area-to-volume ratio, are particularly susceptible to high temperatures and flame. Excessive heat poses a severe threat of damage and decomposition to these elastomers. By leveraging water as a high enthalpy dissipating agent, here, a hydrogel encapsulation strategy is proposed to enhance the flame retardancy and thermal stability of stretchable electronics. The hydrogel-based encapsulation provides thermal protection against flames for more than 10 s through the evaporation of water. Further, the stretchability and functions automatically recover by absorbing air moisture. The incorporation of hydrogel encapsulation enables stretchable electronics to maintain their functions and perform complex tasks, such as fire saving in soft robotics and integrated electronics sensing. With high enthalpy heat dissipation, encapsulated soft electronic devices are effectively shielded and retain their full functionality. This strategy offers a universal method for flame retardant encapsulation of stretchable electronic devices.

18.
Biomark Res ; 12(1): 39, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627840

RESUMO

Liquid-liquid phase separation (LLPS) is a complex and subtle phenomenon whose formation and regulation take essential roles in cancer initiation, growth, progression, invasion, and metastasis. This domain holds a wealth of underutilized unstructured data that needs further excavation for potentially valuable information. Therefore, we retrospectively analyzed the global scientific knowledge in the field over the last decade by using informatics methods (such as hierarchical clustering, regression statistics, hotspot burst, and Walktrap algorithm analysis). Over the past decade, this area enjoyed a favorable development trend (Annual Growth Rate: 34.98%) and global collaboration (International Co-authorship: 27.31%). Through unsupervised hierarchical clustering based on machine learning, the global research hotspots were divided into five dominant research clusters: Cluster 1 (Effects and Mechanisms of Phase Separation in Drug Delivery), Cluster 2 (Phase Separation in Gene Expression Regulation), Cluster 3 (Phase Separation in RNA-Protein Interaction), Cluster 4 (Reference Value of Phase Separation in Neurodegenerative Diseases for Cancer Research), and Cluster 5 (Roles and Mechanisms of Phase Separation). And further time-series analysis revealed that Cluster 5 is the emerging research cluster. In addition, results from the regression curve and hotspot burst analysis point in unison to super-enhancer (a=0.5515, R2=0.6586, p=0.0044) and stress granule (a=0.8000, R2=0.6000, p=0.0085) as the most potential star molecule in this field. More interestingly, the Random-Walk-Strategy-based Walktrap algorithm further revealed that "phase separation, cancer, transcription, super-enhancer, epigenetics"(Relevance Percentage[RP]=100%, Development Percentage[DP]=29.2%), "stress granule, immunotherapy, tumor microenvironment, RNA binding protein"(RP=79.2%, DP=33.3%) and "nanoparticle, apoptosis"(RP=70.8%, DP=25.0%) are closely associated with this field, but are still under-developed and worthy of further exploration. In conclusion, this study profiled the global scientific landscape, discovered a crucial emerging research cluster, identified several pivotal research molecules, and predicted several crucial but still under-developed directions that deserve further research, providing an important reference value for subsequent basic and clinical research of phase separation in cancer.

19.
J Pharm Anal ; 14(4): 100899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38634061

RESUMO

Tyrosine kinase inhibitors (TKIs) have emerged as the first-line small molecule drugs in many cancer therapies, exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways. However, there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites, which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments, alongside other potential side effects or adverse reactions. Therefore, an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods, clinical pharmacokinetics, and therapeutic drug monitoring of different TKIs. This paper provides a comprehensive overview of the advancements in pretreatment methods, such as protein precipitation (PPT), liquid-liquid extraction (LLE), solid-phase extraction (SPE), micro-SPE (µ-SPE), magnetic SPE (MSPE), and vortex-assisted dispersive SPE (VA-DSPE) achieved since 2017. It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) methods, capillary electrophoresis (CE), gas chromatography (GC), supercritical fluid chromatography (SFC) procedures, surface plasmon resonance (SPR) assays as well as novel nanoprobes-based biosensing techniques. In addition, a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.

20.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617277

RESUMO

Optineurin (OPTN) mutations are linked to amyotrophic lateral sclerosis (ALS) and normal tension glaucoma (NTG), but a relevant animal model is lacking, and the molecular mechanisms underlying neurodegeneration are unknown. We found that OPTN C-terminus truncation (OPTN∆C) causes late-onset neurodegeneration of retinal ganglion cells (RGCs), optic nerve (ON), and spinal cord motor neurons, preceded by a striking decrease of axonal mitochondria. Surprisingly, we discover that OPTN directly interacts with both microtubules and the mitochondrial transport complex TRAK1/KIF5B, stabilizing them for proper anterograde axonal mitochondrial transport, in a C-terminus dependent manner. Encouragingly, overexpressing OPTN/TRAK1/KIF5B reverses not only OPTN truncation-induced, but also ocular hypertension-induced neurodegeneration, and promotes striking ON regeneration. Therefore, in addition to generating new animal models for NTG and ALS, our results establish OPTN as a novel facilitator of the microtubule-dependent mitochondrial transport necessary for adequate axonal mitochondria delivery, and its loss as the likely molecular mechanism of neurodegeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...