Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4814, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558692

RESUMO

Detection of molecules is a key issue for many applications. Surface enhanced infrared absorption (SEIRA) uses arrays of resonant nanoantennas with good quality factors which can be used to locally enhance the illumination of molecules. The technique has proved to be an effective tool to detect small amount of material. However, nanoresonators can detect molecules on a narrow bandwidth so that a set of resonators is necessary to identify a molecule fingerprint. Here, we introduce an alternative paradigm and use low quality factor resonators with large radiative losses (over-coupled resonators). The bandwidth enables to detect all absorption lines between 5 and 10 µm, reproducing the molecular absorption spectrum. Counterintuitively, despite a lower quality factor, the system sensitivity is improved and we report a reflectivity variation as large as one percent per nanometer of molecular layer of PMMA. This paves the way to specific identification of molecules. We illustrate the potential of the technique with the detection of the explosive precursor 2,4-dinitrotoluene (DNT). There is a fair agreement with electromagnetic simulations and we also introduce an analytic model of the SEIRA signal obtained in the over-coupling regime.

2.
Nano Lett ; 22(21): 8779-8785, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36190814

RESUMO

While the integration of nanocrystals as an active medium for optoelectronic devices progresses, light management strategies are becoming required. Over recent years, several photonic structures (plasmons, cavities, mirrors, etc.) have been coupled to nanocrystal films to shape the absorption spectrum, tune the directionality, and so on. Here, we explore a photonic equivalent of the acoustic Helmholtz resonator and propose a design that can easily be fabricated. This geometry combines a strong electromagnetic field magnification and a narrow channel width compatible with efficient charge conduction despite hopping conduction. At 80 K, the device reaches a responsivity above 1 A·W-1 and a detectivity above 1011 Jones (3 µm cutoff) while offering a significantly faster time-response than vertical geometry diodes.

3.
Opt Express ; 28(26): 39595-39605, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379505

RESUMO

Surface enhanced infrared absorption (SEIRA) spectroscopy and surface plasmon resonance (SPR) make possible, thanks to plasmonics nanoantennas, the detection of low quantities of biological and chemical materials. Here, we investigate the infrared response of 2,4-dinitrotoluene deposited on various arrays of closely arranged metal-insulator-metal (MIM) resonators and experimentally show how the natural dispersion of the complex refractive index leads to an intertwined combination of SEIRA and SPR effect that can be leveraged to identify molecules. They are shown to be efficient for SEIRA spectroscopy and allows detecting of the dispersive explosive material, 2,4-dinitrotoluene. By changing the in-plane parameters, a whole spectral range of absorptions of 2,4-DNT is scanned. These results open the way to the design of sensors based on SEIRA and SPR combined effects, without including a spectrometer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...