Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611957

RESUMO

This study evaluated the feasibility of contextually producing hydrogen, microbial proteins, and polyhydroxybutyrate (PHB) using a mixed culture of purple phototrophic bacteria biomass under photo fermentative conditions. To this end, three consecutive batch tests were conducted to analyze the biomass growth curve and to explore the potential for optimizing the production process. Experimental findings indicated that inoculating reactors with microorganisms from the exponential growth phase reduced the duration of the process. Furthermore, the most effective approach for simultaneous hydrogen production and the valorization of microbial biomass was found when conducting the process during the exponential growth phase of the biomass. At this stage, achieved after 3 days of fermentation, the productivities of hydrogen, PHB, and microbial proteins were measured at 63.63 L/m3 d, 0.049 kg/m3 d, and 0.045 kg/m3 d, respectively. The biomass composition comprised a total intracellular compound percentage of 56%, with 27% representing PHB and 29% representing proteins. Under these conditions, the estimated daily revenue was maximized, amounting to 0.6 $/m3 d.


Assuntos
Bactérias , Hidrogênio , Fermentação , Biomassa
2.
Sci Total Environ ; 912: 169213, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097066

RESUMO

A dual-growth-limited continuous operated bioreactor (chemostat) was used to enhance lipid accumulation in an enrichment culture of microalgae. The light intensity and nitrogen concentration where both limiting factors resulting in high lipid accumulation in the mixed culture. Both conditions of light and nitrogen excess and deficiency were tested. Strategies to selectively enrich for a phototrophic lipid-storing community, based on the use of different nitrogen sources (ammonium vs. nitrate) and vitamin B supplementation in the growth medium, were evaluated. The dual limitation of both nitrogen and light enhanced the accumulation of storage compounds. Ammoniacal nitrogen was the preferred nitrogen source. Vitamin B supplementation led to a doubling of the lipid productivity. The availability of vitamins played a key role in selecting an efficient lipid-storing community, primarily consisting of Trebouxiophyceae (with an 82 % relative abundance among eukaryotic microorganisms). The obtained lipid volumetric productivity (387 mg L-1 d-1) was among the highest reported in literature for microalgae bioreactors. Lipid production by the microalgae enrichment surpassed the efficiencies reported for continuous microalgae pure cultures, highlighting the benefits of mixed-culture photo-biotechnologies for fuels and food ingredients in the circular economy.


Assuntos
Microalgas , Reatores Biológicos , Nitrogênio , Lipídeos , Vitaminas , Biomassa
3.
Mar Pollut Bull ; 194(Pt B): 115338, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516094

RESUMO

Potentially toxic elements (PTEs) presence in marine sediments can significantly affect the environmental quality and negatively influence economy and recreational activities in related areas. Accordingly, contamination monitoring and control in the marine environment is a fundamental task. In this work, four PTEs behavior (i.e. As, Hg, Pb, and Zn) in sandy foreshore sediments (SFSs) was thoroughly investigated at different pH, redox potential and temperature conditions of the marine water. For all the tests, the released As was 2.7-6 times higher than its initial concentration in water. Nonetheless, final mass balances showed that preferential release in the liquid phase occurred for Pb and Hg (up to 10 % and 9.1 %, respectively). Moreover, final Zn and Hg content increase in SFSs labile fractions indicated their higher bioavailability after the tests. The obtained results outline an approach useful to predict the contaminants behavior in marine matrices and support environmental monitoring and preservation strategies.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Poluentes Químicos da Água , Metais Pesados/análise , Chumbo , Poluentes do Solo/análise , Medição de Risco/métodos , Monitoramento Ambiental/métodos , Água , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
4.
Math Biosci Eng ; 20(4): 7407-7428, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37161157

RESUMO

An original mathematical model describing the photo fermentation process is proposed. The model represents the first attempt to describe the photo fermentative hydrogen production and polyhydroxybutyrate accumulation, simultaneously. The mathematical model is derived from mass balance principles and consists of a system of ordinary differential equations describing the biomass growth, the nitrogen and the substrate degradation, the hydrogen and other catabolites production, and the polyhydroxybutyrate accumulation in photo fermentation systems. Moreover, the model takes into account important inhibiting phenomena, such as the self-shading and the substrate inhibition, which can occur during the evolution of the process. The calibration was performed using a real experimental data set and it was supported by the results of a sensitivity analysis study. The results showed that the most sensitive parameters for both hydrogen and PHB production were the hydrogen yield on substrate, the catabolites yield on substrate, and the biomass yield. Successively, a different experimental data set was used to validate the model. Performance indicators showed that the model could efficiently be used to simulate the photo fermentative hydrogen and polyhydroxybutyrate production by Rhodopseudomonas palustris. For instance, the index of agreement of 0.95 was observed for the validated hydrogen production trend. Moreover, the model well predicted the maximum PHB accumulation in bacterial cells. Indeed, the predicted and observed accumulated PHB were 4.5 and 4.8%, respectively. Further numerical simulations demonstrated the model consistency in describing process inhibiting phenomena. Numerical simulations showed that the acetate and nitrogen inhibition phenomena take place when concentrations are higher than 12.44 g L-1 and lower than 4.76 mg L-1, respectively. Finally, the potential long term hydrogen production from accumulated polyhydroxybutyrate in bacterial cells was studied via a fast-slow analysis technique.


Assuntos
Hidrogênio , Nitrogênio , Fermentação , Biomassa
5.
Microorganisms ; 10(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363730

RESUMO

Rare earth elements (REEs) are essential components of modern technologies and are often challenging to acquire from natural resources. The demand for REEs is so high that there is a clear need to develop efficient and environmentally-friendly recycling methods. In the present study, freeze-dried cells of the extremophile Galdieria sulphuraria were employed to recover yttrium, cerium, europium, and terbium from quaternary-metal aqueous solutions. The biosorption capacity of G. sulphuraria freeze-dried algal biomass was tested at different pHs, contact times, and biosorbent dosages. All rare earths were biosorbed in a more efficient way by the lowest dose of biosorbent, at pH 4.5, within 30 min; the highest removal rate of cerium was recorded at acidic pH (2.5) and after a longer contact time, i.e., 360 min. This study confirms the potential of freeze-dried cells of G. sulphuraria as innovative ecological biosorbents in technological applications for sustainable recycling of metals from e-waste and wastewater.

6.
Environ Res ; 215(Pt 2): 114179, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100103

RESUMO

This work studies the interaction of organic nanoparticles (ON) with various dyes in aqueous solution, to elucidate the role of ON on transport and fate of dyes in the environment, and on dyes removal from wastewater. Studied dyes are Acid Red 66 (AR66), Methylene Blue (MB), Reactive Black 5 (RB5), and Reactive Violet 5 (RV5). ON are extracted from organic matter of anthropogenic origin through resuspension of its colloidal fraction, and successive filtration and dialysis of the obtained suspension. Mechanisms of interaction are investigated initially through three-dimensional excitation emission matrix (3DEEM) analysis. Obtained data indicate that dynamic interactions occur strongly between dye molecules and ON aggregates. 3DEEM spectra of mixed samples containing ON together with one of the tested dyes, present a shape similar to the one of ON alone, but each of them is characterized by specific differences in terms of peaks quenching and shift. The analysis of these singularities suggests that dye molecules are bound to the functional groups of ON through H-bonds, according to the following steps: i) dyes reach the surface of ON aggregates; ii) the molecules pass through the hydrophilic surface of ON aggregates, and reach their hydrophobic core; iii) the dyes are sequestrated into the hydrophobic core of ON aggregates. Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopies analysis confirm the formation of supramolecular aggregates with stable micellar hydrophobic structure, mainly consisting of aliphatic fractions of ON, which explain the disappearance of aromatic groups signals from dyes.


Assuntos
Corantes , Nanopartículas , Corantes/química , Azul de Metileno/química , Nanopartículas/química , Águas Residuárias/química , Água/análise
7.
Plants (Basel) ; 11(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631801

RESUMO

The lanthanides are among the rare earth elements (REEs), which are indispensable constituents of modern technologies and are often challenging to acquire from natural resources. The demand for REEs is so high that there is a clear need to develop efficient and environmentally-friendly recycling methods. In the present study, living cells of the extremophile Galdieria sulphuraria were used to remove four REEs, Yttrium, Cerium, Europium, and Terbium, from single- and quaternary-metal aqueous solutions. Two different strains, SAG 107.79 and ACUF 427, were exposed to solutions buffered at pH 2.5, 3.5, 4.5, and 5.5. Our data demonstrated that the removal performances were strain and pH dependent for all metal ions. At lower pH, ACUF 427 outperformed SAG 107.79 considerably. By increasing the pH of the solutions, there was a significant surge in the aqueous removal performance of both strains. The same trend was highlighted using quaternary-metal solutions, even if the quantities of metal removed were significantly lower. The present study provided the first insight into the comparative removal capacity of the Galdieria sulphuraria strains. The choice of the appropriate operational conditions such as the pH of the metal solutions is an essential step in developing efficient, rapid, and straightforward biological methods for recycling REEs.

8.
Chemosphere ; 286(Pt 1): 131528, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34303051

RESUMO

The concept of natural organic matter of anthropogenic origin is introduced and its characteristics and interaction with chemical pollutants are investigated by adopting several distinct analytic methodologies. Scanning electron microscopy indicates that the used sample of anthropogenic organic matter (AOM) has an amphiphilic nature, which allows its supramolecular organization in water. Fourier transform infrared spectroscopy, in turn, gives a clear indication about the presence of polysaccharide markers, lipidic and amidic fractions, and suggests the absence of free organic acid. AOM sample and AOM mixed with dye sample were examined by the three-dimensional excitation-emission matrix fluorescence spectra and the nuclear magnetic resonance mono-dimensional spectra. The results highlighted the interactions occurring between the AOM and the reactive dye, selected as a representative chemical pollutant. Electron Spin Resonance confirms that the used AOM is able to completely include the dye in its structure. Overall, the obtained results indicate that the fate, transport, and toxicity of pollutants in the environment can be drastically influenced by the presence of AOM.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Compostos Azo , Naftalenos , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 790: 148229, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380244

RESUMO

Significant release of rare earth elements (REEs) into the environment is mainly due to active or abandoned mining sites, but their presence is globally increasing due to their use in several industrial sectors. The effects on primary producers as Raphidocelis subcapitata are still limited. This research focused on La and Ce as the two most widespread REEs that can be currently found up to hundreds of µg/L in water and wastewater. Microalgae were exposed to La and Ce for 3 days (pH = 7.8) (short-term exposure) to derive the effective concentrations inhibiting the growth on 10% (EC10) of the exposed population. EC10 values (0.5 mg/L of La and 0.4 mg/L of Ce) were used for the 28 days long-term exposure (renewal test) to observe after 7, 14, 21, and 28 days on a multi-endpoint basis microalgae growth inhibition (GI), biomarkers of stress (reactive oxygen species (ROS), superoxide dismutase (SOD), and catalase (CAT)), and bioconcentration. Results evidenced that La and Ce EC10 increased GI (day 28) up to 38% and 28%, respectively. ROS, CAT, and SOD activities showed differential responses from day 7 to day 14, 21, and 28, suggesting, in most of the cases, that La and Ce effects were counteracted (i.e., being the values at day 28 not significantly different, p > 0.05, from the relative negative controls), except for La-related ROS activities. La and Ce significantly bioconcentrated in microalgae populations up to 2- and 5-fold (i.e., at day 28 compared to day 7), in that order. Bioconcentrated La and Ce were up to 3157 and 1232 µg/g dry weight (day 28), respectively. These results suggested that low La and Ce concentrations can be slightly toxic to R. subcapitata having the potential to be bioaccumulated and potentially transferred along the food web.


Assuntos
Cério , Metais Terras Raras , Microalgas , Catalase , Cério/toxicidade , Lantânio/toxicidade
10.
Bioresour Technol ; 340: 125595, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34333344

RESUMO

The paper is a preliminary study on the selection of lactic acid producing microorganisms from a mixed microbial population via bioaugmentation. The bioaugmentation technique is based on pH sudden variations occurring in sequential batch steps of a dark fermentation process applied to simple substrates. Different conditions are tested and compared. The structure of microbial communities and concentrations of metabolic intermediates are analyzed to study the possible substrate conversion routes. Obtained results indicate that the initial mixed culture produced a lactic acid percentage of 5% in terms of CODLA/CODPRODUCTS. In the most favourable conditions, the selected culture produced a lactic acid percentage of 59%. The analysis of the composition of microbial communities before and after the bioaugmentation processes, indicates that lactic acid production mainly results from the population change to bacteria belonging to the genus Bacillus. Indeed, the relative abundance of Bacilli increased from 0.67%, to 8.40% during the bioaugmentation cycle.


Assuntos
Ácido Láctico , Microbiota , Bactérias , Fermentação
11.
J Environ Manage ; 297: 113371, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325364

RESUMO

The paper investigates the phenomenon of Carbon Catabolite Repression occurring during photo fermentation of ethanol-rich effluents, which usually contain ethanol as main carbon source, and glycerol as secondary one. The study was conducted using mixed phototrophic cultures, adopting, as substrate, the effluent produced by the alcoholic fermentation of sugar cane bagasse. In order to elucidate the phenomenon, experimental tests were carried out using two different ethanol to glycerol ratios. Results were compared with those resulting from pure ethanol and glycerol conversion. According to the obtained data, as a result of Carbon Catabolite Repression occurrence, the presence of glycerol negatively affects hydrogen production. Indeed, part of the ethanol source is converted to biomass and polyhydroxybutyrate rather than to hydrogen. In more details, the presence of glycerol determines a drop of the hydrogen production, which goes from 12 % to 32 %, according to the ethanol/glycerol ratio, compared to the production obtained from fermentation of ethanol alone. Therefore, to promote the hydrogen production, it is advisable to apply strategies to produce low glycerol concentrations in the ethanol production stage.


Assuntos
Repressão Catabólica , Etanol , Fermentação , Glicerol , Hidrogênio
12.
Chemosphere ; 275: 130091, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33984916

RESUMO

This paper proposes an innovative bioaugmentation approach for the remediation of polycyclic aromatic hydrocarbon (PAH) contaminated soils, based on a novel habitat-based strategy. This approach was tested using two inocula (i-24 and i-96) previously enriched through an anaerobic digestion process on wheat straw. It relies on the application of allochthonous microorganisms characterized by specific functional roles obtained by mimicking a natural hydrolytic environment such as the rumen. The inocula efficiency was tested in presence of naphthalene alone, benzo[a]pyrene alone, and a mix of both of them. In single-contamination tests, i-24 inoculum showed the highest biodegradation rates (84.7% for naphthalene and 51.7% for benzo[a]pyrene). These values were almost 1.2 times higher than those obtained for both contaminants with i-96 inoculum and in the control test in presence of naphthalene alone, while they were 3 times higher compared to the control test in presence of benzo[a]pyrene alone. In mixed-contamination tests, i-96 inoculum showed final biodegradation efficiencies for naphthalene and benzo[a]pyrene between 1.1 and 1.5 higher than i-24 inoculum or autochthonous biomass. Total microbial abundances increased in the bioaugmented tests in line with the PAH degradation. The microbial community structure showed the highest diversity at the end of the experiment in almost all cases. Values of the Firmicutes active fraction up to 7 times lower were observed in the i-24 bioaugmented tests compared to i-96 and control tests. This study highlights a successful bioaugmentation strategy with biological components that can be reused in multiple processes supporting an integrated and environmentally sustainable bioremediation system.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Anaerobiose , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
13.
Ground Water ; 59(5): 677-693, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33655491

RESUMO

Particular attention is paid to the risk of carbon dioxide (CO2 ) leakage in geologic carbon sequestration (GCS) operations, as it might lead to the failure of sequestration efforts and to the contamination of underground sources of drinking water. As carbon dioxide would eventually reach shallower formations under its gaseous state, understanding its multiphase flow behavior is essential. To this aim, a hypothetical gaseous leak of carbon dioxide resulting from a well integrity failure of the GCS system in operation at Hellisheiði (CarbFix2) is here modeled. Simulations show that migration of gaseous carbon dioxide is largely affected by formation stratigraphy, intrinsic permeability, and retention properties, whereas the initial groundwater hydraulic gradient (0.0284) has practically no effect. In two different scenarios, about 18.3 and 30.6% of the CO2 that would have been injected by the GCS system for 3 days could be potentially released again into the atmosphere due to a sustained leakage of the same duration. As the gaseous leak occurs, the aquifer experiences high pressure buildups, and the presence of a less conductive layer further magnifies these. Strikingly, the dimensional analysis showed that buoyant and viscous forces can be comparable over time within the predicted gaseous plumes, even far from the leakage source. Local pressure gradients, buoyant, viscous, and capillary forces all play an important role during leakage. Therefore, neglecting one or more of these contributions might lead to a partial prediction of gaseous CO2 flow behavior in the subsurface, giving space to incorrect interpretations and wrong operational choices.


Assuntos
Água Subterrânea , Dióxido de Carbono , Sequestro de Carbono , Silicatos
14.
Environ Res ; 195: 110761, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524333

RESUMO

Natural organic matter (NOM) from Sphagnum peat soil is extracted in water and subjected to several investigations to obtain structural and conformational information. Data show that the extracted NOM is self-organized in colloidal aggregates of variable sizes (from nano to micro scales, depending on the solvent composition, i.e., ultrapure water, solutions with denaturing agents, acetone, ethanol). Aggregates are formed by highly heterogeneous classes of organic compounds. According to the results of nuclear magnetic resonance and fluorescence measurements, the three-dimensional structure of aggregates, revealed by scanning electron microscope imaging, is supposed to be stabilized by the exposition of polar functional groups to the solvent, with consequent formation of hydrogen bonds, dipole-interactions and cation bridging. In contrast, the inner part of the aggregates displays hydrophobic features and is hypothesized to be further reinforced by the establishment of π-stacking interactions. The structure is assumed to be a supramolecular aggregation of small-medium oligomeric fragments (Max 750 Da) in which priority pollutants are entrapped by dispersive forces. The structures are shown to be nanosized spheroidal particles further aggregated to form higher dimension supra-structures. Carbohydrates play primary role, stabilizing the structure and giving marked hydrophilic properties to the aggregates.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Substâncias Húmicas/análise , Interações Hidrofóbicas e Hidrofílicas , Máscaras , Solo , Água
15.
Crit Rev Biotechnol ; 41(4): 628-648, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33601992

RESUMO

This work aims at analyzing and comparing the different modeling approaches used to date to simulate, design and control photo fermentation processes for hydrogen production and/or wastewater treatment. The study is directed to researchers who approach the problem of photo fermentation mathematical modeling. It is a useful tool to address future research in this specific field in order to overcome the difficulty of modeling a complex, not totally elucidate process. We report a preliminary identification of the environmental and biological parameters, included in the models, which affect photo fermentation. Based on model features, we distinguish three different approaches, i.e. kinetic, parametric and non-ideal reactors. We explore the characteristics of each approach, reporting and comparing the obtained results and underlining the differences between models, together with the advantages and the limitations of each of them. The analysis of the approaches indicates that Kinetic models are useful to describe the process from a biochemical point of view, without considering bio-reactor hydrodynamics and the spatial variations that Parametric Models can be utilized to study the influence and the interactions between the operational conditions. They do not take into account the biochemical process mechanism and the influence of reactor hydrodynamics. Quite the opposite, non-ideal reactors models focus on the reactor configuration. Otherwise, the biochemical description of purple non-sulfur bacteria activities is usually simplified. This review indicates that there still is a lack of models that fully describe photo fermentation processes.


Assuntos
Reatores Biológicos , Modelos Teóricos , Fermentação , Hidrodinâmica , Hidrogênio
16.
Bioresour Technol ; 319: 124157, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32987280

RESUMO

The aim of this work was to study the biological catalysts and possible substrate conversion routes in mesophilic dark fermentation reactors aimed at producing H2 from olive mill wastewater. Bacillus and Clostridium were the most abundant phylotypes during the rapid stage of H2 production. Chemical analyses combined with predictive functional profiling of the bacterial communities indicated that the lactate fermentation was the main H2-producing route. In fact, during the fermentation process, lactate and acetate were consumed, while H2 and butyrate were being produced. The fermentation process was rich in genes that encode enzymes for lactate generation from pyruvate. Lactate conversion to butyrate through the generation of pyruvate produced H2 through the recycling of electron carriers via the pyruvate ferredoxin oxydoreductase pathway. Overall, these findings showed the synergy among lactate-, acetate- and H2-producing bacteria, which complex interactions determine the H2 production routes in the bioreactors.


Assuntos
Olea , Bactérias/genética , Reatores Biológicos , Fermentação , Hidrogênio
17.
J Environ Manage ; 271: 111006, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778291

RESUMO

The applicability and convenience of biohydrogen and poly-ß-hydroxybutyrate production through single-stage photofermentation of winery wastewater is demonstrated in the present study. Experiments are conducted using a purple non-sulfur bacteria mixed consortium, subject to variable nutrient conditions, to analyze the effect of initial chemical oxygen demand and the available nitrogen source on the metabolic response. Results show that winery wastewater is a promising substrate for photofermentation processes, despite the presence of inhibiting compounds such as phenolics. Nonetheless, the initial chemical oxygen demand must be carefully controlled to maximize hydrogen production. Up to 468 mL L-1 of hydrogen and 203 mg L-1 of poly-ß-hydroxybutyrate can be produced starting from an initial chemical oxygen demand of 1500 mg L-1. The used nitrogen source may direct substrate transformation through different metabolic pathways. Interestingly, the maximum production of both hydrogen and poly-ß-hydroxybutyrate occurred when glutamate was used as the nitrogen source.


Assuntos
Nitrogênio , Águas Residuárias , Hidrogênio , Hidroxibutiratos , Poliésteres
18.
Bioresour Technol ; 313: 123703, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32580121

RESUMO

Inocula enrichment was performed using an innovative habitat-based selection approach to improve wheat straw (WS) anaerobic digestion (AD) efficiency. The procedure was carried out by sequentially re-inoculating the primary microbial community seven times in subsequent anaerobic reactors containing untreated WS. Re-inocula were performed at different re-inoculum times (24, 48, and 96 h) by moving a porous support mimicking a rumen structure from one batch to the next (S-tests) or re-inoculating only the culture medium (C-tests). Highest H2 production yields were observed after four and five re-inocula (0.08 ± 0.02 NmL h-1 gVS-1 and 0.09 ± 0.02 NmL h-1 gVS-1) for S-24 and S-48, respectively. For S-96, higher CH4 yields were observed after the start-up test and sixth re-inoculum (0.05 ± 0.003 NmL h-1 gVS-1 and 0.04 ± 0.005 NmL h-1 gVS-1, respectively). Accordingly, S-96 showed the highest active Archaea component (7%). C-test microbial communities were dominated by fermenting, hydrogen-producing bacteria and showed lower microbial community diversity than S-tests.


Assuntos
Lignina , Metano , Anaerobiose , Animais , Biocombustíveis , Biomassa , Reatores Biológicos
19.
Ground Water ; 58(4): 598-610, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31531851

RESUMO

The potential environmental impacts on subsurface water resources induced by unconventional gas production are still under debate. Solving the controversy regarding the potential adverse effects of gas leakages on groundwater resources is therefore crucial. In this work, an interesting real-world case is presented in order to give further insight into methane multiphase and transport behavior in the shallow subsurface, often disregarded compared to the behavior in the deep subsurface. Multiphase flow and solute transport simulations were performed to assess the vulnerability of an existing shallow unconfined aquifer with respect to a hypothetical methane leakage resulting from a well integrity failure of a former deep geothermal well. The analysis showed that migration of gaseous methane through the aquifer under examination can be extremely fast (of the order of a few minutes), occurring predominantly vertically upwards, close to the well. By contrast, dissolved methane migration is largely affected by the groundwater flow field and occurs over larger time scales (of the order of months/years), covering a greater distance from the well. Overall, the real concern for this site in case of gas leakages is the risk of explosion in the close vicinity of the well. Predicted maximum gaseous fluxes (0.89 to 22.60 m3 /d) are comparable to those reported for leaking wells, and maximum dissolved methane concentrations may overcome risk mitigation thresholds (7 to 10 mg/L) in a few years. Therefore, surface and subsurface monitoring before decommissioning is strongly advised to ensure the safety of the site.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Metano/análise , Poluentes Químicos da Água/análise , Recursos Hídricos , Poços de Água
20.
Environ Technol ; 41(15): 1923-1936, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30468630

RESUMO

A mathematical model to simulate the biological processes occurring in a membrane bioreactor (MBR) is presented. The model accounts for different MBR technical features by introducing specific permeability parameters for the applied membrane system. The model considers for the heterotrophic storage process and the formation of soluble microbial products. The introduction of an inhibition coefficient influencing the anoxic kinetics enables the model to simulate the particular operating conditions of the plant, such as a high or low dissolved oxygen concentration in the denitrification tank. The model was applied at the MBR wastewater treatment plant of Vila Nova do Ceira (Portugal) which uses a classic pre-denitrification cycle. Data for calibration and validation were sampled at the same wastewater treatment plant. Calibration was achieved by varying the kinetic parameters of the model to match the simulation results to the experimental data. The values of the kinetic parameters were similar to those found in the literature. The validation was performed by two different methodologies to analyse the model response to diverse operating conditions, and to evaluate the resilience of the MBR. Calibration and validation results were evaluated with mean average error, root mean square error and fractional mean bias as performance indexes. In most cases, these indexes confirmed the high accuracy of the model. Overall, the results of the calibration and validation steps enriched the proposed model by providing an effective biological description of the processes characterizing the MBR. Thus, the model is a reliable tool for the management and designing of MBR.


Assuntos
Esgotos , Águas Residuárias , Reatores Biológicos , Calibragem , Membranas Artificiais , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...