Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2408266, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301880

RESUMO

Fe-based mica minerals usually display two opposing magnetic ground states, either they behave as spin-glasses or as layered ferrimagnets. No definite reason has been proposed as an explanation for this duality. This conundrum is unraveled by comparing the synthetic micas KFe3[MGe3]O10X2 with M═Fe and Ga, X═OH- and F-. Neutron diffraction demonstrates a 2D to 3D magnetic transition in KFe3[FeGe3]O10(OH)2 while just hints or no order at all are observed for the fluorides with M═Fe and Ga respectively. The 3D transition is triggered by the presence of iron in the intralayer tetrahedra. DFT+U calculations show that the magnetic exchange couplings between the previously believed solely magnetic octahedral layers would otherwise be frustrated without this intralayer iron.

2.
Phys Chem Chem Phys ; 26(22): 15844-15849, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38779829

RESUMO

We report the magnetic structure and properties of a thiocyanate-based honeycomb magnet [Na(OH2)3]Mn(NCS)3 which crystallises in the unusual low-symmetry trigonal space group P3̄. Magnetic measurements on powder samples show this material is an antiferromagnet (ordering temperature TN,mag = 18.1(6) K) and can be described by nearest neighbour antiferromagnetic interactions J = -11.07(4) K. A method for growing neutron-diffraction sized single crystals (>10 mm3) is demonstrated. Low temperature neutron single crystal diffraction shows that the compound adopts the collinear antiferromagnetic structure with TN,neut = 18.94(7) K, magnetic space group P3̄'. Low temperature second-harmonic generation (SHG) measurements provide no evidence of breaking of the centre of symmetry.

3.
Nat Mater ; 22(8): 999-1006, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37202488

RESUMO

Ultralow thermal conductivity and fast ionic diffusion endow superionic materials with excellent performance both as thermoelectric converters and as solid-state electrolytes. Yet the correlation and interdependence between these two features remain unclear owing to a limited understanding of their complex atomic dynamics. Here we investigate ionic diffusion and lattice dynamics in argyrodite Ag8SnSe6 using synchrotron X-ray and neutron scattering techniques along with machine-learned molecular dynamics. We identify a critical interplay of the vibrational dynamics of mobile Ag and a host framework that controls the overdamping of low-energy Ag-dominated phonons into a quasi-elastic response, enabling superionicity. Concomitantly, the persistence of long-wavelength transverse acoustic phonons across the superionic transition challenges a proposed 'liquid-like thermal conduction' picture. Rather, a striking thermal broadening of low-energy phonons, starting even below 50 K, reveals extreme phonon anharmonicity and weak bonding as underlying features of the potential energy surface responsible for the ultralow thermal conductivity (<0.5 W m-1 K-1) and fast diffusion. Our results provide fundamental insights into the complex atomic dynamics in superionic materials for energy conversion and storage.

4.
Chem Sci ; 14(13): 3531-3540, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37006672

RESUMO

AMX3 compounds are structurally diverse, a notable example being the post-perovskite structure which adopts a two-dimensional framework with corner- and edge-sharing octahedra. Few molecular post-perovskites are known and of these, none have reported magnetic structures. Here we report the synthesis, structure and magnetic properties of molecular post-perovskites: CsNi(NCS)3, a thiocyanate framework, and two new isostructural analogues CsCo(NCS)3 and CsMn(NCS)3. Magnetisation measurements show that all three compounds undergo magnetic order. CsNi(NCS)3 (Curie temperature, T C = 8.5(1) K) and CsCo(NCS)3 (T C = 6.7(1) K) order as weak ferromagnets. On the other hand, CsMn(NCS)3 orders as an antiferromagnet (Néel temperature, T N = 16.8(8) K). Neutron diffraction data of CsNi(NCS)3 and CsMn(NCS)3, show that both are non-collinear magnets. These results suggest molecular frameworks are fruitful ground for realising the spin textures required for the next generation of information technology.

5.
J Phys Chem C Nanomater Interfaces ; 127(6): 3330-3338, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36846095

RESUMO

A plethora of temperature-induced phase transitions have been observed in (CH3NH3)[M(HCOO)3] compounds, where M is Co(II) or Ni(II). Among them, the nickel compound exhibits a combination of magnetic and nuclear incommensurability below Néel temperature. Despite the fact that the zero-field behavior has been previously addressed, here we study in depth the macroscopic magnetic behavior of this compound to unveil the origin of the atypical magnetic response found in it and in its parent family of formate perovskites. In particular, they show a puzzling magnetization reversal in the curves measured starting from low temperatures, after cooling under zero field. The first atypical phenomenon is the impossibility of reaching zero magnetization, even by nullifying the applied external field and even compensating it for the influence of the Earth's magnetic field. Relatively large magnetic fields are needed to switch the magnetization from negative to positive values or vice versa, which is compatible with a soft ferromagnetic system. The atypical path found in its first magnetization curve and hysteresis loop at low temperatures is the most noticeable feature. The magnetization curve switches from more than 1200 Oe from the first magnetization loop to the subsequent magnetization loops. A feature that cannot be explained using a model based on unbalanced pair of domains. As a result, we decipher this behavior in light of the incommensurate structure of this material. We propose, in particular, that the applied magnetic field induces a magnetic phase transition from a magnetically incommensurate structure to a magnetically modulated collinear structure.

6.
J Am Chem Soc ; 145(3): 1783-1792, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36626185

RESUMO

Metal-organic magnets (MOMs), modular magnetic materials where metal atoms are connected by organic linkers, are promising candidates for next-generation quantum technologies. MOMs readily form low-dimensional structures and so are ideal systems to realize physical examples of key quantum models, including the Haldane phase, where a topological excitation gap occurs in integer-spin antiferromagnetic (AFM) chains. Thus, far the Haldane phase has only been identified for S = 1, with S ≥ 2 still unrealized because the larger spin imposes more stringent requirements on the magnetic interactions. Here, we report the structure and magnetic properties of CrCl2(pym) (pym = pyrimidine), a new quasi-1D S = 2 AFM MOM. We show, using X-ray and neutron diffraction, bulk property measurements, density-functional theory calculations, and inelastic neutron spectroscopy (INS), that CrCl2(pym) consists of AFM CrCl2 spin chains (J1 = -1.13(4) meV) which are weakly ferromagnetically coupled through bridging pym (J2 = 0.10(2) meV), with easy-axis anisotropy (D = -0.15(3) meV). We find that, although small compared to J1, these additional interactions are sufficient to prevent observation of the Haldane phase in this material. Nevertheless, the proximity to the Haldane phase together with the modularity of MOMs suggests that layered Cr(II) MOMs are a promising family to search for the elusive S = 2 Haldane phase.

7.
Inorg Chem ; 62(1): 247-255, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36534762

RESUMO

A-site ordered double perovskites with the general formula LnBaCo2O6-δ (where Ln is a lanthanide element) present electrical and electrocatalytic properties that make them attractive as possible ceramic electrode materials for solid oxide cells or alkaline electrolyzers. The properties are highly influenced by the anion vacancy concentration, which is strongly related to the Co-oxidation state, and their location in the structure. Awareness of the stable phases is essential to synthesize, evaluate, and optimize the properties of LnBaCo2O6-δ oxides at operating conditions in different applications. TbBaCo2O6-δ are representative oxides of these layered perovskite systems. The present article reports a study of TbBaCo2O6-δ by electron diffraction, high-resolution electron microscopy, and powder neutron diffraction experiments at different temperatures. The synthesis of TbBaCo2O6-δ in air and slow cooling to room temperature (RT) at 5 °C h-1 leads to samples formed by distinct phases with different oxygen contents and crystal structures. The 122 and 112 phases (with ap × 2ap × 2ap and ap × ap × 2ap unit cells, respectively, with ap being the lattice parameter of the simple cubic perovskite structure) are predominant in quasi-equilibrium prepared samples (cooled at RT at 1 °C h-1) or prepared in Ar flow and quenched to RT. The evolution of the crystal structure of TbBaCo2O6-δ during thermal oxygen release/uptaking consists of modulation from the 122 phase to the 112 phase (or vice versa during uptaking) by creation/occupation of anion vacancies within the TbO1-δ planes. Anion vacancies are not detected in the oxygen crystallographic position different from those located within the TbO1-δ planes even at the highest temperatures, supporting the 2D character of the high anion conduction of the LnBaCo2O6-δ oxides.

8.
Proc Natl Acad Sci U S A ; 119(40): e2208717119, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161890

RESUMO

Ice polymorphs show extraordinary structural diversity depending on pressure and temperature. The behavior of hydrogen-bond disorder not only is a key ingredient for their structural diversity but also controls their physical properties. However, it has been a challenge to determine the details of the disordered structure in ice polymorphs under pressure, because of the limited observable reciprocal space and inaccuracies related to high-pressure techniques. Here, we present an elucidation of the disordered structure of ice VII, the dominant high-pressure form of water, at 2.2 GPa and 298 K, from both single-crystal and powder neutron-diffraction techniques. We reveal the three-dimensional atomic distributions from the maximum entropy method and unexpectedly find a ring-like distribution of hydrogen in contrast to the commonly accepted discrete sites. In addition, total scattering analysis at 274 K clarified the difference in the intermolecular structure from ice VIII, the ordered counterpart of ice VII, despite an identical molecular geometry. Our complementary structure analyses robustly demonstrate the unique disordered structure of ice VII. Furthermore, these findings are related to proton dynamics, which drastically vary with pressure, and will contribute to an understanding of the structural origin of anomalous physical properties of ice VII under pressures.

9.
Chem Mater ; 34(14): 6529-6540, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35910538

RESUMO

An operando dual-edge X-ray absorption spectroscopy on both transition-metal ordered and disordered LiNi0.5Mn1.5O4 during electrochemical delithiation and lithiation was carried out. The large data set was analyzed via a chemometric approach to gain reliable insights into the redox activity and the local structural changes of Ni and Mn throughout the electrochemical charge and discharge reaction. Our findings confirm that redox activity relies predominantly on the Ni2+/4+ redox couple involving a transient Ni3+ phase. Interestingly, a reversible minority contribution of Mn3+/4+ is also evinced in both LNMO materials. While the reaction steps and involved reactants of both ordered and disordered LNMO materials generally coincide, we highlight differences in terms of reaction dynamics as well as in local structural evolution induced by the TM ordering.

10.
J Am Chem Soc ; 143(50): 21195-21199, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34877864

RESUMO

Following the synthesis of hydroxamate titanium-organic frameworks, we now extend these siderophore-type linkers to the assembly of the first titanium-organic polyhedra displaying permanent porosity. Mixed-linker versions of this molecular cage (cMUV-11) are also used to demonstrate the effect of pore chemistry in accessing high surface areas of near 1200 m2·g-1.

11.
J Am Chem Soc ; 143(4): 1798-1806, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432818

RESUMO

The use of Metal-Organic Frameworks as crystalline matrices for the synthesis of multiple component or multivariate solids by the combination of different linkers into a single material has emerged as a versatile route to tailor the properties of single-component phases or even access new functions. This approach is particularly relevant for Zr6-MOFs due to the synthetic flexibility of this inorganic node. However, the majority of materials are isolated as polycrystalline solids, which are not ideal to decipher the spatial arrangement of parent and exchanged linkers for the formation of homogeneous structures or heterogeneous domains across the solid. Here we use high-throughput methodologies to optimize the synthesis of single crystals of UiO-68 and UiO-68-TZDC, a photoactive analogue based on a tetrazine dicarboxylic derivative. The analysis of the single linker phases reveals the necessity of combining both linkers to produce multivariate frameworks that combine efficient light sensitization, chemical stability, and porosity, all relevant to photocatalysis. We use solvent-assisted linker exchange reactions to produce a family of UiO-68-TZDC% binary frameworks, which respect the integrity and morphology of the original crystals. Our results suggest that the concentration of TZDC in solution and the reaction time control the distribution of this linker in the sibling crystals for a uniform mixture or the formation of core-shell domains. We also demonstrate how the possibility of generating an asymmetric distribution of both linkers has a negligible effect on the electronic structure and optical band gap of the solids but controls their performance for drastic changes in the photocatalytic activity toward proton or methyl viologen reduction.

12.
Dalton Trans ; 49(44): 15646-15662, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33156311

RESUMO

Near room temperature hysteretic thermo-induced valence tautomerism was discovered in a layered 2D-coordination polymer of manganese(ii) with nitronyl nitroxide radicals separated by ClO4- anions (1). This opens a novel approach towards switchable materials with hysteresis and under ambient conditions with prospects for applications and for investigating solid-state intramolecular electron transfers. Herein, two new compounds with similar layered structures where the anions (X) are BF4- (2) or PF6- (3) are presented. Their magnetic behaviors also reveal hysteretic thermo-induced valence tautomeric conversions but in two steps and evidencing a strong effect of the anion. This occurs near room temperature (278-220 K) for 2 and higher for 3 (380-330 K). Their single crystal structures at different temperatures show that this involves two successive thermally-triggered electron transfers with switching between three redox tautomers formulated as {[MnII2-yMnIIIy(NITIm)3-y(NITRed)y]X}n, where y is temperature dependent. Upon cooling from the high-temperature redox-tautomer (y = 0) to the intermediate one (y = 1), half of the manganese(ii) centers are oxidized to manganese(iii) and 1/3 of the nitronyl nitroxide radicals (NITIm-) are reduced to the aminoxyl form (NITRed2-). On further cooling, the second half of the manganese(ii) centers are oxidized and another 1/3 of the radicals are reduced to reach the low-temperature redox-tautomer (y = 2). Upon reheating, reverse electron transfers occur. This is complementarily supported by X-ray powder measurements, differential scanning calorimetry, and electron paramagnetic resonance and Raman spectroscopies. These multi-stable compounds in which manganese ions exchange reversibly their electron with the nitronyl nitroxide radical are outstanding rare examples of two-step valence tautomerism in the solid state promoted by the polymeric structure.

13.
Inorg Chem ; 59(24): 17896-17905, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33245662

RESUMO

The present work is dedicated to characterization of the structural phase transition and incommensurate magnetic structure of the [CH3NH3][Ni(COOH)3] (1) perovskite-like metal-organic compound. The structural and magnetic characterization has been performed through variable-temperature single-crystal and powder neutron diffraction. Compound 1 crystallizes in the orthorhombic Pnma space group at room temperature. Below 84 K, a new phase has been observed. The occurrence of new reflections, which can be indexed with a wavevector along the c axis [q = 0.1426(2)c*], suggests the occurrence of an incommensurately modulated crystal structure. The structure was determined using the superspace group formalism on the Pnma(00γ)0s0 space group. This incommensurate phase remains unchanged with a decrease of the temperature up to the base temperature (ca. 2 K). Moreover, the magnetic susceptibility data, collected under zero-field-cooled and field-cooled conditions at different applied magnetic fields, show that compound 1 exhibits antiferromagnetic behavior below 34 K. In the current paper, we have confirmed that compound 1 presents the coexistence of nuclear and proper magnetic incommensurability below TN.

14.
IUCrJ ; 7(Pt 5): 803-813, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939272

RESUMO

Polarized neutron diffraction is used to study in depth the magnetic properties of the heterometallic compound [NH2(CH3)2][FeIIIFeII(HCOO)6] and give insight into its magnetic behaviour, addressing open questions that will contribute to a better understanding of this attention-grabbing material and other related ones. Previous results revealed that upon cooling, the magnetic moments of the FeII and FeIII sites do not order simultaneously: the magnetization of the FeII site increases faster than that of the FeIII sites. Unpolarized neutron diffraction measurements at 2 K with no external field revealed some discrepancies in the saturation value of the magnetic signal on the FeIII sites and in the ferromagnetic moment along the c axis. These discrepancies could be related to the actual distribution of magnetic moment, since unpolarized neutron diffraction gives information on the magnetic moment localized only on the magnetic ions. Polarized neutron diffraction allows an analysis of the magnitude of the spin density over magnetic and non-magnetic ions (the organic ligand and the counterion), which can give a clue to explain the low saturation on the FeIII sites and the correlation with the physical measurements. The present study also contributes to the understanding of the magneto-electric behaviour of this compound, giving insight into the role of metal disorder in the origin of the structural phase transition, which is responsible for its antiferrolelectric order, and into the influence of spin-density delocalization on its magneto-electric properties, allowing a discussion of the alternative explanations given so far for its electric properties at low temperature.

15.
Inorg Chem ; 59(17): 12111-12121, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32806009

RESUMO

The potential of the perovskite system Nd1-xSrxCoO3-δ (x = 1/3 and 2/3) as cathode material for solid oxide fuel cells (SOFCs) has been investigated via detailed structural, electrical, and electrochemical characterization. The average structure of x = 1/3 is orthorhombic with a complex microstructure consisting of intergrown, adjacent, perpendicularly oriented domains. This orthorhombic symmetry remains throughout the temperature range 373-1073 K, as observed by neutron powder diffraction. A higher Sr content of x = 2/3 leads to stabilization of the cubic perovskite with a homogeneous microstructure and with a higher oxygen vacancy content and cobalt oxidation state than the orthorhombic phase at SOFC operation temperature. Both materials are p-type electronic conductors with high total conductivities of 690 and 1675 S·cm-1 at 473 K in air for x = 1/3 and 2/3, respectively. Under working conditions, both compounds exhibit similar electronic conductivities, since x = 2/3 loses more oxygen on heating than x = 1/3, associated with a greater loss of p-type charger carriers. However, composite cathodes prepared with Nd1/3Sr2/3CoO3-δ and Ce0.8Gd0.2O2-δ present lower ASR values (0.10 Ω·cm2 at 973 K in air) than composites prepared with Nd2/3Sr1/3CoO3-δ and Ce0.8Gd0.2O2-δ (0.34 Ω·cm2). The high activity for the oxygen electrochemical reaction at intermediate temperatures is likely attributable to a large disordered oxygen-vacancy concentration, resulting in a very promising SOFC cathode for real devices.

17.
RSC Adv ; 10(19): 11200-11209, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35495334

RESUMO

A novel imidazolium halometallate molten salt with formula (trimim)[FeCl4] (trimim: 1,2,3-trimethylimidazolium) was synthetized and studied with structural and physico-chemical characterization. Variable-temperature synchrotron X-ray powder diffraction (SXPD) from 100 to 400 K revealed two structural transitions at 200 and 300 K. Three different crystal structures were determined combining single crystal X-ray diffraction (SCXD), neutron powder diffraction (NPD), and SXPD. From 100 to 200 K, the compound exhibits a monoclinic crystal structure with space group P21/c. At 200 K, the former crystal system and space group are retained, but a disorder in the organic cations is introduced. Above 300 K, the structure transits to the orthorhombic space group Pbcn, retaining the crystallinity up to 400 K. The study of the thermal expansion process in this temperature range showed anisotropically evolving cell parameters with an axial negative thermal expansion. Such an induction occurs immediately after the crystal phase transition due to the translational and reorientational dynamic displacements of the imidazolium cation within the crystal building. Electrochemical impedance spectroscopy (EIS) demonstrated that this motion implies a high and stable solid-state ionic conduction (range from 4 × 10-6 S cm-1 at room temperature to 5.5 × 10-5 S cm-1 at 400 K). In addition, magnetization and heat capacity measurements proved the presence of a three-dimensional antiferromagnetic ordering below 3 K. The magnetic structure, determined by neutron powder diffraction, corresponds to ferromagnetic chains along the a-axis, which are antiferromagnetically coupled to the nearest neighboring chains through an intricate network of superexchange pathways, in agreement with the magnetometry measurements.

18.
IUCrJ ; 6(Pt 1): 105-115, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30713708

RESUMO

The present article is devoted to the characterization of the structural phase transitions of the [CH3NH3][Co(COOH)3] (1) perovskite-like metal-organic compound through variable-temperature single-crystal neutron diffraction. At room temperature, compound 1 crystallizes in the orthorhombic space group Pnma (phase I). A decrease in temperature gives rise to a first phase transition from the space group Pnma to an incommensurate phase (phase II) at approximately 128 K. At about 96 K, this incommensurate phase evolves into a second phase with a sharp change in the modulation vector (phase III). At lower temperatures (ca 78 K), the crystal structure again becomes commensurate and can be described in the monoclinic space group P21/n (phase IV). Although phases I and IV have been reported previously [Boca et al. (2004). Acta Cryst. C60, m631-m633; Gómez-Aguirre et al. (2016). J. Am. Chem. Soc. 138, 1122-1125; Mazzuca et al. (2018). Chem. Eur. J. 24, 388-399], phases III and IV corresponding to the Pnma(00γ)0s0 space group have not yet been described. These phase transitions involve not only the occurrence of small distortions in the three-dimensional anionic [Co(HCOO)3]- framework, but also the reorganization of the [CH3NH3]+ counter-ions in the cavities of the structure, which gives rise to an alteration of the hydrogen-bonded network, modifying the electrical properties of compound 1.

19.
Sci Rep ; 8(1): 10665, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30006614

RESUMO

(ND4)2[FeCl5(D2O)] represents a promising example of the hybrid molecular/inorganic approach to create materials with strong magneto-electric coupling. Neutron spherical polarimetry, which is directly sensitive to the absolute magnetic configuration and domain population, has been used in this work to unambiguously prove the multiferroicity of this material. We demonstrate that the application of an electric field upon cooling results in the stabilization of a single-cycloidal magnetic domain below 6.9 K, while poling in the opposite electric field direction produces the full population of the domain with opposite magnetic chirality. We prove the complete switchability of the magnetic domains at low temperature by the applied electric field, which constitutes a direct proof of the strong magnetoelectric coupling. Additionally, we refine the magnetic structure of the ordered ground state, deducing the underlying magnetic space group consistent with the direction of the ferroelectric polarization, and we provide evidence of a collinear amplitude-modulated state with magnetic moments along the a-axis in the temperature region between 6.9 and 7.2 K.

20.
Inorg Chem ; 57(4): 1787-1795, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29393644

RESUMO

This contribution addresses standing questions about the nature and consequences of the ion self-assembly and magnetic structures, as well as the molecular motion of the crystalline structure as a function of the temperature, in halometalate materials based on imidazolium cation. We present the magnetic structure and magnetostructural correlations of 1-ethyl-2,3-dimethylimidazolium tetrachloridoferrate, (Edimim)[FeCl4], resolved by neutron diffraction studies. Single-crystal, synchrotron powder X-ray diffraction and powder neutron diffraction techniques have been combined to follow the temperature evolution on its crystallographic structure from 2 K close to its melting point (340 K). In this sense, slightly above room temperature (307 K) (Edimim)[FeCl4] presents a single-crystal to single-crystal transition (SCSC), from phase I (space group P21/n) to phase II (P21/m), accompanied by a notable increase in the disorder of the imidazolium cation, as well as in the metal complex anion. The temperature evolution and solid-phase transitions of the presented compound were followed in detail by synchrotron X-ray powder diffraction (SXPD), which confirms the occurrence of another phase transition at 330 K, phase III (P21/m), the crystal structure of which was elucidated from the SXPD pattern. Moreover, this material presents an anisotropic thermal expansion with a switch from axial positive to negative thermal expansion coefficients as the temperature is raised above the first phase transition, which has been correlated with the molecular motion of the imidazolium-based molecules, producing not only a shortening of the counterion···counterion distances but also the occurrence of different quasi-isoenergetic crystal structures as a function of the temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA