Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Microbiol ; 9: 2212, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283426

RESUMO

An outstanding feature of filamentous fungi is their ability to produce a wide variety of small bioactive molecules that contribute to their survival, fitness, and pathogenicity. The vast collection of these so-called secondary metabolites (SMs) includes molecules that play a role in virulence, protect fungi from environmental damage, act as toxins or antibiotics that harm host tissues, or hinder microbial competitors for food sources. Many of these compounds are used in medical treatment; however, biosynthetic genes for the production of these natural products are arranged in compact clusters that are commonly silent under growth conditions routinely used in laboratories. Consequently, a wide arsenal of yet unknown fungal metabolites is waiting to be discovered. Here, we describe the effects of deletion of hosA, one of four classical histone deacetylase (HDAC) genes in Aspergillus nidulans; we show that HosA acts as a major regulator of SMs in Aspergillus with converse regulatory effects depending on the metabolite gene cluster examined. Co-inhibition of all classical enzymes by the pan HDAC inhibitor trichostatin A and the analysis of HDAC double mutants indicate that HosA is able to override known regulatory effects of other HDACs such as the class 2 type enzyme HdaA. Chromatin immunoprecipitation analysis revealed a direct correlation between hosA deletion, the acetylation status of H4 and the regulation of SM cluster genes, whereas H3 hyper-acetylation could not be detected in all the upregulated SM clusters examined. Our data suggest that HosA has inductive effects on SM production in addition to its classical role as a repressor via deacetylation of histones. Moreover, a genome wide transcriptome analysis revealed that in addition to SMs, expression of several other important protein categories such as enzymes of the carbohydrate metabolism or proteins involved in disease, virulence, and defense are significantly affected by the deletion of HosA.

2.
mBio ; 7(6)2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803184

RESUMO

Histone deacetylases (HDACs) remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogen Aspergillus fumigatus Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype of Aspergillus RpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organism Aspergillus nidulans Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes. IMPORTANCE: This paper reports on the fungal histone deacetylase RpdA and its importance for the viability of the fungal pathogen Aspergillus fumigatus and other filamentous fungi, a finding that is without precedent in other eukaryotic pathogens. Our data clearly indicate that loss of RpdA activity, as well as depletion of the enzyme in the nucleus, results in lethality of the corresponding Aspergillus mutants. Interestingly, both catalytic activity and proper cellular localization depend on the presence of an acidic motif within the C terminus of RpdA-type enzymes of filamentous fungi that is missing from the homologous proteins of yeasts and higher eukaryotes. The pivotal role, together with the fungus-specific features, turns RpdA into a promising antifungal target of histone deacetylase inhibitors, a class of molecules that is successfully used for the treatment of certain types of cancer. Indeed, some of these inhibitors significantly delay the germination and growth of different filamentous fungi via inhibition of RpdA. Upcoming analyses of clinically approved and novel inhibitors will elucidate their therapeutic potential as new agents for the therapy of invasive fungal infections-an interesting aspect in light of the rising resistance of fungal pathogens to conventional therapies.


Assuntos
Aspergillus fumigatus/enzimologia , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Viabilidade Microbiana , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Aspergillus nidulans/enzimologia , Aspergillus nidulans/fisiologia , Ácidos Hidroxâmicos/farmacologia
3.
J Clin Invest ; 118(8): 2979-85, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18654662

RESUMO

Novel biomarkers, such as circulating (auto)antibody signatures, may improve early detection and treatment of ruptured atherosclerotic lesions and accompanying cardiovascular events, such as myocardial infarction. Using a phage-display library derived from cDNAs preferentially expressed in ruptured peripheral human atherosclerotic plaques, we performed serological antigen selection to isolate displayed cDNA products specifically interacting with antibodies in sera from patients with proven ruptured peripheral atherosclerotic lesions. Two cDNA products were subsequently evaluated on a validation series of patients with peripheral atherosclerotic lesions, healthy controls, and patients with coronary artery disease at different stages. Our biomarker set was able to discriminate between patients with peripheral ruptured lesions and patients with peripheral stable plaques with 100% specificity and 76% sensitivity. Furthermore, 93% of patients with an acute myocardial infarction (AMI) tested positive for our biomarkers, whereas all patients with stable angina pectoris tested negative. Moreover, 90% of AMI patients who initially tested negative for troponin T, for which a positive result is known to indicate myocardial infarction, tested positive for our biomarkers upon hospital admission. In conclusion, antibody profiling constitutes a promising approach for noninvasive diagnosis of atherosclerotic lesions, because a positive serum response against a set of 2 cDNA products showed a strong association with the presence of ruptured peripheral atherosclerotic lesions and myocardial infarction.


Assuntos
Aterosclerose/diagnóstico , Aterosclerose/patologia , Autoanticorpos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/patologia , Idoso , Angina Pectoris/sangue , Angina Pectoris/patologia , Antígenos/imunologia , Aterosclerose/sangue , Autoanticorpos/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos de Coortes , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/patologia , Estudos Transversais , DNA Complementar/isolamento & purificação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Biblioteca de Peptídeos , Doenças Vasculares Periféricas/sangue , Doenças Vasculares Periféricas/patologia , Reprodutibilidade dos Testes , Ruptura Espontânea/patologia , Sensibilidade e Especificidade
4.
Circulation ; 111(25): 3443-52, 2005 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-15967845

RESUMO

BACKGROUND: Pathological aspects of atherosclerosis are well described, but gene profiles during atherosclerotic plaque progression are largely unidentified. METHODS AND RESULTS: Microarray analysis was performed on mRNA of aortic arches of ApoE-/- mice fed normal chow (NC group) or Western-type diet (WD group) for 3, 4.5, and 6 months. Of 10 176 reporters, 387 were differentially (>2x) expressed in at least 1 group compared with a common reference (ApoE-/-, 3- month NC group). The number of differentially expressed genes increased during plaque progression. Time-related expression clustering and functional grouping of differentially expressed genes suggested important functions for genes involved in inflammation (especially the small inducible cytokines monocyte chemoattractant protein [MCP]-1, MCP-5, macrophage inflammatory protein [MIP]-1alpha, MIP-1beta, MIP-2, and fractalkine) and matrix degradation (cathepsin-S, matrix metalloproteinase-2/12). Validation experiments focused on the gene cluster of small inducible cytokines. Real-time polymerase chain reaction revealed a plaque progression-dependent increase in mRNA levels of MCP-1, MCP-5, MIP-1alpha, and MIP-1beta. ELISA for MCP-1 and MCP-5 showed similar results. Immunohistochemistry for MCP-1, MCP-5, and MIP-1alpha located their expression to plaque macrophages. An inhibiting antibody for MCP-1 and MCP-5 (11K2) was designed and administered to ApoE-/- mice for 12 weeks starting at the age of 5 or 17 weeks. 11K2 treatment reduced plaque area and macrophage and CD45+ cell content and increased collagen content, thereby inducing a stable plaque phenotype. CONCLUSIONS: Gene profiling of atherosclerotic plaque progression in ApoE-/- mice revealed upregulation of the gene cluster of small inducible cytokines. Further expression and in vivo validation studies showed that this gene cluster mediates plaque progression and stability.


Assuntos
Aterosclerose/genética , Quimiocinas/fisiologia , Perfilação da Expressão Gênica , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Aorta Torácica , Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Quimiocina CCL2/imunologia , Quimiocina CCL8 , Quimiocinas/genética , Análise por Conglomerados , Progressão da Doença , Matriz Extracelular/metabolismo , Inflamação/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Quimioatraentes de Monócitos/imunologia , Proteínas Quimioatraentes de Monócitos/fisiologia , Peptídeo Hidrolases/genética , RNA Mensageiro/análise , Fatores de Tempo
5.
Arterioscler Thromb Vasc Biol ; 23(12): 2123-30, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14512372

RESUMO

It is generally established that the unstable plaque is the major cause of acute clinical sequelae of atherosclerosis. Unfortunately, terms indicating lesions prone to plaque instability, such as "vulnerable plaque," and the different phenotypes of unstable plaques, such as plaque rupture, plaque fissuring, intraplaque hemorrhage, and erosion, are often used interchangeably. Moreover, the different phenotypes of the unstable plaque are mostly referred to as plaque rupture. In the first part of this review, we will focus on the definition of true plaque rupture and the definitions of other phenotypes of plaque instability, especially on intraplaque hemorrhage, and discuss the phenotypes of available animal models of plaque instability. The second part of this review will address the pathogenesis of plaque rupture from a local and a systemic perspective. Plaque rupture is thought to occur because of changes in the plaque itself or systemic changes in the patient. Interestingly, contributing factors seem to overlap to a great extent and might even be interrelated. Finally, we will propose an integrative view on the pathogenesis of plaque rupture.


Assuntos
Arteriosclerose/fisiopatologia , Animais , Humanos , Ruptura/etiologia , Ruptura/fisiopatologia
6.
J Pathol ; 200(4): 516-25, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12845619

RESUMO

The extracellular matrix is no longer seen as the static embedding in which cells reside; it has been shown to be involved in cell proliferation, migration and cell-cell interactions. Turnover of the different extracellular matrix components is an active process with multiple levels of regulation. Collagen, a major extracellular matrix constituent of the myocardium and the arterial vascular wall, is synthesized by (myo)fibroblasts in the myocardium and smooth muscle cells in the medial arterial vascular wall. Its degradation is controlled by proteinases, which include matrix metalloproteinases. This review will focus on the impact of fibrosis and especially collagen turnover on the progression of heart failure and atherosclerosis, two of the main cardiovascular pathologies. We will discuss data from human studies and animal models, with an emphasis on the effects of interventions on collagen synthesis and degradation. We conclude that there is a dynamic (dis)balance in the rate of collagen synthesis and degradation during heart failure and atherosclerosis, which makes the outcome of interventions not always predictable. Alternative approaches for intervening in collagen metabolism will be discussed as possible therapeutic intervention strategies.


Assuntos
Colágeno/metabolismo , Doença da Artéria Coronariana/metabolismo , Matriz Extracelular/metabolismo , Insuficiência Cardíaca/metabolismo , Músculo Liso Vascular/metabolismo , Miocárdio/metabolismo , Animais , Animais Geneticamente Modificados , Doença da Artéria Coronariana/tratamento farmacológico , Vasos Coronários , Matriz Extracelular/efeitos dos fármacos , Insuficiência Cardíaca/tratamento farmacológico , Humanos , Hipolipemiantes/uso terapêutico , Metaloproteinases da Matriz/metabolismo , Camundongos , Modelos Animais , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores de LDL/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores
7.
Blood ; 102(8): 2803-10, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12842993

RESUMO

Recent suppressive subtractive hybridization analysis on human atherosclerotic plaque-derived RNA revealed genes upregulated in plaques with a thrombus versus stable plaques. Clone SSH6, containing part of a putative open reading frame of an unknown protein, was further investigated. Full-length cDNA, coding for a 473-amino acid (aa) protein, was identified in a vascular smooth muscle cell (SMC) cDNA library. Bioinformatics suggested the presence of multiple SSH6 variants due to alternative splicing of exon 3. Multiple-tissue Northern blot analysis demonstrated a differential expression pattern of these variants, as a ubiquitously expressed SSH6 mRNA missing exon 3, was detected apart from a putative vascular SMC-specific form containing exon 3. Western blot analysis indicated a ubiquitous 35-kDa protein (SSH6-beta), in addition to a 45-kDa protein (vasculin), detected in the vascular wall and in plasma. Analysis of arteries displaying various stages of atherosclerosis indicated that the vasculin/SSH6-beta ratio increases throughout atherogenesis. Immunohistochemical analysis demonstrated cytoplasmic expression of SSH6 gene products in macrophages, endothelial cells, and SMCs. In summary, we identified a novel mRNA/protein, vasculin, in the arterial wall and plasma. The regulated expression of vasculin in plaques suggests a role in atherogenesis. Moreover, its presence in plasma opens perspectives for vasculin as a marker for atherosclerosis.


Assuntos
Arteriosclerose/metabolismo , Proteínas Sanguíneas/biossíntese , Proteínas Sanguíneas/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Western Blotting , Linhagem Celular , Células Cultivadas , DNA Complementar/metabolismo , Proteínas de Ligação a DNA , Eletroforese em Gel Bidimensional , Éxons , Biblioteca Gênica , Glutationa Transferase/metabolismo , Humanos , Fragmentos de Imunoglobulinas/metabolismo , Imuno-Histoquímica , Íntrons , Dados de Sequência Molecular , Biblioteca de Peptídeos , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Schistosoma japonicum/metabolismo , Distribuição Tecidual
8.
Curr Opin Lipidol ; 13(5): 545-52, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12352019

RESUMO

PURPOSE OF REVIEW: Rupture of an atherosclerotic plaque is the predominant underlying event in the pathogenesis of acute coronary syndromes and stroke. While ruptured plaques are morphologically well described, the precise molecular mechanisms involved in plaque rupture are still incompletely understood. Over the last few years, techniques like microarray, suppression subtractive hybridization and differential display enabled us to study complex gene expression profiles that occur during the process of atherogenesis. In this review we focus on recent large-scale gene expression profiles performed on whole mount vascular specimens. RECENT FINDINGS: The gene expression profiles on whole mount vascular tissue confirmed that at least three mechanisms are involved in plaque rupture: (1) a disturbed balance in extracellular matrix turnover, (2) disturbed regulation of cell turnover and (3) processes involved in lipid metabolism. Animal models exhibiting features of plaque rupture reflect the involvement of these three mechanisms. The most dramatic mouse phenotypes were observed after interventions in at least two of these mechanisms. SUMMARY: The observation of plaque rupture in recent mice models is indicative of the multifactorial process of plaque rupture. This multifactorial character of plaque rupture suggests that interventions may be most effective when they influence more than one mechanisms at a time.


Assuntos
Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , Animais , Doença da Artéria Coronariana/metabolismo , Matriz Extracelular/metabolismo , Humanos , Metabolismo dos Lipídeos , Ruptura Espontânea/genética , Ruptura Espontânea/metabolismo , Ruptura Espontânea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...