Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2306038, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381100

RESUMO

Metabolites are essential molecules involved in various metabolic processes, and their deficiencies and excessive concentrations can trigger significant physiological consequences. The detection of multiple metabolites within a non-invasively collected biofluid could facilitate early prognosis and diagnosis of severe diseases. Here, a metal oxide heterojunction transistor (HJ-TFT) sensor is developed for the label-free, rapid detection of uric acid (UA) and 25(OH)Vitamin-D3 (Vit-D3) in human saliva. The HJ-TFTs utilize a solution-processed In2 O3 /ZnO channel functionalized with uricase enzyme and Vit-D3 antibody for the selective detection of UA and Vit-D3, respectively. The ultra-thin tri-channel architecture facilitates strong coupling between the electrons transported along the buried In2 O3 /ZnO heterointerface and the electrostatic perturbations caused by the interactions between the surface-immobilized bioreceptors and target analytes. The biosensors can detect a wide range of concentrations of UA (from 500 nm to 1000 µM) and Vit-D3 (from 100 pM to 120 nm) in human saliva within 60 s. Moreover, the biosensors exhibit good linearity with the physiological concentration of metabolites and limit of detections of ≈152 nm for UA and ≈7 pM for Vit-D3 in real saliva. The specificity is demonstrated against various interfering species, including other metabolites and proteins found in saliva, further showcasing its capabilities.

2.
Angew Chem Int Ed Engl ; 62(45): e202302888, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37380618

RESUMO

The determination of molecular conformations of oligomeric acceptors (OAs) and their impact on molecular packing are crucial for understanding the photovoltaic performance of their resulting polymer solar cells (PSCs) but have not been well studied yet. Herein, we synthesized two dimeric acceptor materials, DIBP3F-Se and DIBP3F-S, which bridged two segments of Y6-derivatives by selenophene and thiophene, respectively. Theoretical simulation and experimental 1D and 2D NMR spectroscopic studies prove that both dimers exhibit O-shaped conformations other than S- or U-shaped counter-ones. Notably, this O-shaped conformation is likely governed by a distinctive "conformational lock" mechanism, arising from the intensified intramolecular π-π interactions among their two terminal groups within the dimers. PSCs based on DIBP3F-Se deliver a maximum efficiency of 18.09 %, outperforming DIBP3F-S-based cells (16.11 %) and ranking among the highest efficiencies for OA-based PSCs. This work demonstrates a facile method to obtain OA conformations and highlights the potential of dimeric acceptors for high-performance PSCs.

3.
Biosens Bioelectron ; 237: 115448, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348190

RESUMO

Transistor-based biosensors represent an emerging technology for inexpensive point-of-care testing (POCT) applications. However, the limited sensitivity of the current transistor technologies hinders their practical deployment. In this study, we developed tri-channel In2O3/ZnO heterojunction thin-film transistors (TFTs) featuring the surface-immobilized enzyme glucose oxidase to detect glucose in various biofluids. This unusual channel design facilitates strong coupling between the electrons transported along the buried In2O3/ZnO heterointerface and the electrostatic perturbations caused by the interactions between glucose and surface-immobilized glucose oxidase. The enzyme selectively binds to glucose, causing a change in charge density on the channel surface. By exploring this effect, the solid-state biosensing TFT (BioTFT) can selectively detect glucose in artificial and real saliva over a wide range of concentrations from 500 nM to 20 mM with limits of detection of ∼365 pM (artificial saliva) and ∼416 nM (real saliva) in less than 60 s. The specificity of the sensor towards glucose has been demonstrated against various interfering species in artificial saliva, further highlighting its unique capabilities. Moreover, the BioTFTs exhibited good operating stability upon storage for up to two weeks, with relative standard deviation (RSD) values ranging from 2.36% to 6.39% for 500 nM glucose concentration. Our BioTFTs are easy to manufacture with reliable operation, making them ideal for non-invasive POCT applications.


Assuntos
Técnicas Biossensoriais , Óxido de Zinco , Glucose , Saliva , Transistores Eletrônicos , Saliva Artificial , Glucose Oxidase , Óxidos
4.
Nat Commun ; 13(1): 3260, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672406

RESUMO

The massive deployment of fifth generation and internet of things technologies requires precise and high-throughput fabrication techniques for the mass production of radio frequency electronics. We use printable indium-gallium-zinc-oxide semiconductor in spontaneously formed self-aligned <10 nm nanogaps and flash-lamp annealing to demonstrate rapid manufacturing of nanogap Schottky diodes over arbitrary size substrates operating in 5 G frequencies. These diodes combine low junction capacitance with low turn-on voltage while exhibiting cut-off frequencies (intrinsic) of >100 GHz. Rectifier circuits constructed with these co-planar diodes can operate at ~47 GHz (extrinsic), making them the fastest large-area electronic devices demonstrated to date.

5.
Adv Mater ; 34(22): e2108524, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34990058

RESUMO

The low carrier mobility of organic semiconductors and the high parasitic resistance and capacitance often encountered in conventional organic Schottky diodes hinder their deployment in emerging radio frequency (RF) electronics. Here, these limitations are overcome by combining self-aligned asymmetric nanogap electrodes (≈25 nm) produced by adhesion lithography, with a high mobility organic semiconductor, and RF Schottky diodes able to operate in the 5G frequency spectrum are demonstrated. C16 IDT-BT is used, as the high hole mobility polymer, and the impact of p-doping on the diode performance is studied. Pristine C16 IDT-BT-based diodes exhibit maximum intrinsic and extrinsic cutoff frequencies (fC ) of >100 and 6 GHz, respectively. This extraordinary performance is attributed to the planar nature of the nanogap channel and the diode's small junction capacitance (<2 pF). Doping of C16 IDT-BT with the molecular p-dopant C60 F48 improves the diode's performance further by reducing the series resistance resulting to intrinsic and extrinsic fC of >100 and ≈14 GHz respectively, while the DC output voltage of an RF rectifier circuit increases by a tenfold. Our work highlights the importance of the planar nanogap architecture and paves the way for the use of organic Schottky diodes in large-area RF electronics of the future.

6.
Adv Mater ; 34(3): e2104608, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34738258

RESUMO

Solid-state transistor sensors that can detect biomolecules in real time are highly attractive for emerging bioanalytical applications. However, combining upscalable manufacturing with the required performance remains challenging. Here, an alternative biosensor transistor concept is developed, which relies on a solution-processed In2 O3 /ZnO semiconducting heterojunction featuring a geometrically engineered tri-channel architecture for the rapid, real-time detection of important biomolecules. The sensor combines a high electron mobility channel, attributed to the electronic properties of the In2 O3 /ZnO heterointerface, in close proximity to a sensing surface featuring tethered analyte receptors. The unusual tri-channel design enables strong coupling between the buried electron channel and electrostatic perturbations occurring during receptor-analyte interactions allowing for robust, real-time detection of biomolecules down to attomolar (am) concentrations. The experimental findings are corroborated by extensive device simulations, highlighting the unique advantages of the heterojunction tri-channel design. By functionalizing the surface of the geometrically engineered channel with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody receptors, real-time detection of the SARS-CoV-2 spike S1 protein down to am concentrations is demonstrated in under 2 min in physiological relevant conditions.


Assuntos
Técnicas Biossensoriais/instrumentação , COVID-19/virologia , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/análise , Transistores Eletrônicos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Imobilizados , Anticorpos Antivirais , Bioengenharia , COVID-19/sangue , COVID-19/diagnóstico , Teste para COVID-19/instrumentação , Teste para COVID-19/métodos , Simulação por Computador , Sistemas Computacionais , DNA/análise , Desenho de Equipamento , Humanos , Índio , Microtecnologia , Estudo de Prova de Conceito , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Óxido de Zinco
7.
Adv Mater ; 34(22): e2105007, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34714562

RESUMO

Organic semiconductor nanoparticles (NPs) composed of an electron donor/acceptor (D/A) semiconductor blend have recently emerged as an efficient class of hydrogen-evolution photocatalysts. It is demonstrated that using conjugated polymers functionalized with (oligo)ethylene glycol side chains in NP photocatalysts can greatly enhance their H2 -evolution efficiency compared to their nonglycolated analogues. The strategy is broadly applicable to a range of structurally diverse conjugated polymers. Transient spectroscopic studies show that glycolation facilitates charge generation even in the absence of a D/A heterojunction, and further suppresses both geminate and nongeminate charge recombination in D/A NPs. This results in a high yield of photogenerated charges with lifetimes long enough to efficiently drive ascorbic acid oxidation, which is correlated with greatly enhanced H2 -evolution rates in the glycolated NPs. Glycolation increases the relative permittivity of the semiconductors and facilitates water uptake. Together, these effects may increase the high-frequency relative permittivity inside the NPs sufficiently, to cause the observed suppression of exciton and charge recombination responsible for the high photocatalytic activities of the glycolated NPs.

8.
ACS Appl Mater Interfaces ; 13(43): 51592-51601, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34696578

RESUMO

Neuromorphic computing has the potential to address the inherent limitations of conventional integrated circuit technology, ranging from perception, pattern recognition, to memory and decision-making ( Acc. Chem. Res. 2019, 52 (4), 964-974) ( Nature 2004, 431 (7010), 796-803) ( Nat. Nanotechnol. 2013, 8 (1), 13-24). Despite their low power consumption ( Nano Lett. 2016, 16 (11), 6724-6732), traditional two-terminal memristors can perform only a single function while lacking heterosynaptic plasticity ( Nanotechnology 2013, 24 (38), 382001). Inspired by the unconditioned reflex, multiterminal memristive transistors (memtransistor) were developed to realize complex functions, such as multiterminal modulation and heterosynaptic plasticity ( Nature 2018, 554, (7693), 500-504). Here we combine a hybrid metal halide perovskite with an organic conjugated polymer to form heterojunction transistors that are responsive to both electrical and optical stimuli. We show that the synergistic effects of photoinduced ion migration in the perovskite and electronic transport in the polymer layers can be exploited to realize memristive functions. The device combines reversible, nonvolatile conductance modulation with large switching current ratios, high endurance, and long retention times. Using in situ scanning Kelvin probe microscopy and variable-temperature charge transport measurement, we correlate the collective effects of bias-induced and photoinduced ion migration with the heterosynaptic behavior observed in this hybrid memtransistor. The hybrid heterojunction channel concept is expected to be applicable to other material combinations making it a promising platform for deployment in innovative neuromorphic devices of the future.

9.
ChemSusChem ; 14(17): 3569-3578, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-33928763

RESUMO

Self-assembled monolayers (SAMs) based on Br-2PACz ([2-(3,6-dibromo-9H-carbazol-9-yl)ethyl]phosphonic acid) 2PACz ([2-(9H-Carbazol-9-yl)ethyl]phosphonic acid) and MeO-2PACz ([2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl]phosphonic acid) molecules were investigated as hole-extracting interlayers in organic photovoltaics (OPVs). The highest occupied molecular orbital (HOMO) energies of these SAMs were measured at -6.01 and -5.30 eV for Br-2PACz and MeO-2PACz, respectively, and found to induce significant changes in the work function (WF) of indium-tin-oxide (ITO) electrodes upon chemical functionalization. OPV cells based on PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)]) : BTP-eC9 : PC71 BM ([6,6]-phenyl-C71-butyric acid methyl ester) using ITO/Br-2PACz anodes exhibited a maximum power conversion efficiency (PCE) of 18.4 %, outperforming devices with ITO/MeO-2PACz (14.5 %) and ITO/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT : PSS) (17.5 %). The higher PCE was found to originate from the much higher WF of ITO/Br-2PACz (-5.81 eV) compared to ITO/MeO-2PACz (4.58 eV) and ITO/PEDOT : PSS (4.9 eV), resulting in lower interface resistance, improved hole transport/extraction, lower trap-assisted recombination, and longer carrier lifetimes. Importantly, the ITO/Br-2PACz electrode was chemically stable, and after removal of the SAM it could be recycled and reused to construct fresh OPVs with equally impressive performance.

10.
Adv Mater ; 33(7): e2003137, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33382153

RESUMO

Controlling the morphology of metal halide perovskite layers during processing is critical for the manufacturing of optoelectronics. Here, a strategy to control the microstructure of solution-processed layered Ruddlesden-Popper-phase perovskite films based on phenethylammonium lead bromide ((PEA)2 PbBr4 ) is reported. The method relies on the addition of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8 -BTBT) into the perovskite formulation, where it facilitates the formation of large, near-single-crystalline-quality platelet-like (PEA)2 PbBr4 domains overlaid by a ≈5-nm-thin C8 -BTBT layer. Transistors with (PEA)2 PbBr4 /C8 -BTBT channels exhibit an unexpectedly large hysteresis window between forward and return bias sweeps. Material and device analysis combined with theoretical calculations suggest that the C8 -BTBT-rich phase acts as the hole-transporting channel, while the quantum wells in (PEA)2 PbBr4 act as the charge storage element where carriers from the channel are injected, stored, or extracted via tunneling. When tested as a non-volatile memory, the devices exhibit a record memory window (>180 V), a high erase/write channel current ratio (104 ), good data retention, and high endurance (>104 cycles). The results here highlight a new memory device concept for application in large-area electronics, while the growth technique can potentially be exploited for the development of other optoelectronic devices including solar cells, photodetectors, and light-emitting diodes.

11.
Nat Commun ; 11(1): 3004, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532975

RESUMO

From established to emergent technologies, doping plays a crucial role in all semiconducting devices. Doping could, theoretically, be an excellent technique for improving repressively low transconductances in n-type organic electrochemical transistors - critical for advancing logic circuits for bioelectronic and neuromorphic technologies. However, the technical challenge is extreme: n-doped polymers are unstable in electrochemical transistor operating environments, air and water (electrolyte). Here, the first demonstration of doping in electron transporting organic electrochemical transistors is reported. The ammonium salt tetra-n-butylammonium fluoride is simply admixed with the conjugated polymer poly(N,N'-bis(7-glycol)-naphthalene-1,4,5,8-bis(dicarboximide)-co-2,2'-bithiophene-co-N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide), and found to act as a simultaneous molecular dopant and morphology-additive. The combined effects enhance the n-type transconductance with improved channel capacitance and mobility. Furthermore, operational and shelf-life stability measurements showcase the first example of water-stable n-doping in a polymer. Overall, the results set a precedent for doping/additives to impact organic electrochemical transistors as powerfully as they have in other semiconducting devices.

12.
ACS Appl Mater Interfaces ; 12(28): 31591-31600, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32564590

RESUMO

Recent advances in solution-processable semiconducting colloidal quantum dots (CQDs) have enabled their use in a range of (opto)electronic devices. In most of these studies, device fabrication relied almost exclusively on thermal annealing to remove organic residues and enhance inter-CQD electronic coupling. Despite its widespread use, however, thermal annealing is a lengthy process, while its effectiveness to eliminate organic residues remains limited. Here, we exploit the use of xenon flash lamp sintering to post-treat solution-deposited layers of lead sulfide (PbS) CQDs and their application in n-channel thin-film transistors (TFTs). The process is simple, fast, and highly scalable and allows for efficient removal of organic residues while preserving both quantum confinement and high channel current modulation. Bottom-gate, top-contact PbS CQD TFTs incorporating SiO2 as the gate dielectric exhibit a maximum electron mobility of 0.2 cm2 V-1 s-1, a value higher than that of control transistors (≈10-2 cm2 V-1 s-1) processed via thermal annealing for 30 min at 120 °C. Replacing SiO2 with a polymeric dielectric improves the transistor's channel interface, leading to a significant increase in electron mobility to 3.7 cm2 V-1 s-1. The present work highlights the potential of flash lamp annealing as a promising method for the rapid manufacture of PbS CQD-based (opto)electronic devices and circuits.

13.
Adv Sci (Weinh) ; 7(7): 1903419, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32274320

RESUMO

Molecular doping is often used in organic semiconductors to tune their (opto)electronic properties. Despite its versatility, however, its application in organic photovoltaics (OPVs) remains limited and restricted to p-type dopants. In an effort to control the charge transport within the bulk-heterojunction (BHJ) of OPVs, the n-type dopant benzyl viologen (BV) is incorporated in a BHJ composed of the donor polymer PM6 and the small-molecule acceptor IT-4F. The power conversion efficiency (PCE) of the cells is found to increase from 13.2% to 14.4% upon addition of 0.004 wt% BV. Analysis of the photoactive materials and devices reveals that BV acts simultaneously as n-type dopant and microstructure modifier for the BHJ. Under optimal BV concentrations, these synergistic effects result in balanced hole and electron mobilities, higher absorption coefficients and increased charge-carrier density within the BHJ, while significantly extending the cells' shelf-lifetime. The n-type doping strategy is applied to five additional BHJ systems, for which similarly remarkable performance improvements are obtained. OPVs of particular interest are based on the ternary PM6:Y6:PC71BM:BV(0.004 wt%) blend for which a maximum PCE of 17.1%, is obtained. The effectiveness of the n-doping strategy highlights electron transport in NFA-based OPVs as being a key issue.

14.
J Org Chem ; 85(1): 277-283, 2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31779306

RESUMO

The synthesis of a new benzocyclobutene based polymer, PSBBB, designed as a dielectric material for use in organic thin film transistors was reported. Compared to conventional benzocyclobutene-based materials, the introduction of a butoxide substituent at the 7-position of the benzocyclobutene pendant unit on the polymer allowed PSBBB to be cross-linked at temperatures of 120 °C, thus rendering it compatible with the processing requirements of flexible plastic substrates. The cross-linking behavior of PSBBB was investigated by Fourier transform infrared spectroscopy and differential scanning calorimetry, demonstrating cross-linking of the polymer after curing at 120 °C. Bottom-gate bottom-contact organic thin film transistors were fabricated using PSBBB as dielectric, affording a performance comparable to that of other dielectric polymeric materials.

15.
Adv Mater ; 31(46): e1902965, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31566264

RESUMO

The application of liquid-exfoliated 2D transition metal disulfides (TMDs) as the hole transport layers (HTLs) in nonfullerene-based organic solar cells is reported. It is shown that solution processing of few-layer WS2 or MoS2 suspensions directly onto transparent indium tin oxide (ITO) electrodes changes their work function without the need for any further treatment. HTLs comprising WS2 are found to exhibit higher uniformity on ITO than those of MoS2 and consistently yield solar cells with superior power conversion efficiency (PCE), improved fill factor (FF), enhanced short-circuit current (JSC ), and lower series resistance than devices based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and MoS2 . Cells based on the ternary bulk-heterojunction PBDB-T-2F:Y6:PC71 BM with WS2 as the HTL exhibit the highest PCE of 17%, with an FF of 78%, open-circuit voltage of 0.84 V, and a JSC of 26 mA cm-2 . Analysis of the cells' optical and carrier recombination characteristics indicates that the enhanced performance is most likely attributed to a combination of favorable photonic structure and reduced bimolecular recombination losses in WS2 -based cells. The achieved PCE is the highest reported to date for organic solar cells comprised of 2D charge transport interlayers and highlights the potential of TMDs as inexpensive HTLs for high-efficiency organic photovoltaics.

16.
Adv Mater ; 31(37): e1902291, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31343087

RESUMO

Contact resistance is renowned for its unfavorable impact on transistor performance. Despite its notoriety, the nature of contact resistance in organic electrochemical transistors (OECTs) remains unclear. Here, by investigating the role of contact resistance in n-type OECTs, the first demonstration of source/drain-electrode surface modification for achieving state-of-the-art n-type OECTs is reported. Specifically, thiol-based self-assembled monolayers (SAMs), 4-methylbenzenethiol (MBT) and pentafluorobenzenethiol (PFBT), are used to investigate contact resistance in n-type accumulation-mode OECTs made from the hydrophilic copolymer P-90, where the deliberate functionalization of the gold source/drain electrodes decreases and increases the energetic mismatch at the electrode/semiconductor interface, respectively. Although MBT treatment is found to increase the transconductance three-fold, contact resistance is not found to be the dominant factor governing OECT performance. Additional morphology and surface energy investigations show that increased performance comes from SAM-enhanced source/drain electrode surface energy, which improves wetting, semiconductor/metal interface quality, and semiconductor morphology at the electrode and channel. Overall, contact resistance in n-type OECTs is investigated, whilst identifying source/drain electrode treatment as a useful device engineering strategy for achieving state of the art n-type OECTs.

17.
Adv Mater ; 31(27): e1900871, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31074923

RESUMO

Incorporating the molecular organic Lewis acid tris(pentafluorophenyl)borane [B(C6 F5 )3 ] into organic semiconductors has shown remarkable promise in recent years for controlling the operating characteristics and performance of various opto/electronic devices, including, light-emitting diodes, solar cells, and organic thin-film transistors (OTFTs). Despite the demonstrated potential, however, to date most of the work has been limited to B(C6 F5 )3 with the latter serving as the prototypical air-stable molecular Lewis acid system. Herein, the use of bis(pentafluorophenyl)zinc [Zn(C6 F5 )2 ] is reported as an alternative Lewis acid additive in high-hole-mobility OTFTs based on small-molecule:polymer blends comprising 2,7-dioctyl[1]benzothieno [3,2-b][1]benzothiophene and indacenodithiophene-benzothiadiazole. Systematic analysis of the materials and device characteristics supports the hypothesis that Zn(C6 F5 )2 acts simultaneously as a p-dopant and a microstructure modifier. It is proposed that it is the combination of these synergistic effects that leads to OTFTs with a maximum hole mobility value of 21.5 cm2 V-1 s-1 . The work not only highlights Zn(C6 F5 )2 as a promising new additive for next-generation optoelectronic devices, but also opens up new avenues in the search for high-mobility organic semiconductors.

18.
Sci Adv ; 3(3): e1602640, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28435867

RESUMO

Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.

19.
Adv Mater ; 29(19)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28295712

RESUMO

This paper reports the controlled growth of atomically sharp In2 O3 /ZnO and In2 O3 /Li-doped ZnO (In2 O3 /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In2 O3 /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In2 O3 over the interface, in a process similar to modulation doping. Electrical characterization reveals the profound impact of the presence of the n-doped ZnO layer on the charge transport properties of the isotype In2 O3 /Li-ZnO heterojunctions as well as on the operating characteristics of the resulting TFTs. By judicious optimization of the In2 O3 /Li-ZnO interface microstructure, and Li concentration, significant enhancement in both the electron mobility and TFT bias stability is demonstrated.

20.
ACS Appl Mater Interfaces ; 8(38): 25415-27, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27592516

RESUMO

n-channel organic semiconductors are prone to oxidation upon exposed to ambient conditions. Herein, we report design and synthesis of diketopyrrolopyrrole (DPP)-based oligomers for ambipolar organic thin-film transistors (OFETs) with excellent air and bias stability at ambient conditions. The cyclic voltammetry measurements reveal exceptional electrochemical stability during the redox cycle of oligomers. Structural properties including aggregation, crystallinity, and morphology in thin film were investigated by UV-visible spectroscopy, atomic force microscopy (AFM), thin-film X-ray diffraction (XRD), and grazing incidence small-angle X-ray scattering (GISAXS) measurements. AFM reveals morphological changes induced by different processing conditions whereas GISAXS measurements show an increase in the population of face-on oriented crystallites in films subjected to a combination of solvent and thermal treatments. These measurements also highlight the significance of chalcogen atom from sulfur to selenium on the photophysical, optical, electronic, and solid-state properties of DPP-DPP oligomers. Charge carrier mobilities of the oligomers were investigated by fabricating top-gate bottom-contact (TG-BC) thin-film transistors by annealing the thin films under various conditions. Combined solvent and thermal annealing of DPP-DPP oligomer thin films results in consistent electron mobilities as high as ∼0.2 cm(2) V(-1) s(-1) with an on/off ratio exceeding 10(4). Field-effect behavior was retained for up to ∼4 weeks, which illustrates remarkable air and bias stability. This work paves the way toward the development of n-channel DPP-DPP-based oligomers exhibiting retention of field-effect behavior with superior stability at ambient conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...