Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 40(1): 139, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33894774

RESUMO

BACKGROUND: Glioblastomas stem-like cells (GSCs) by invading the brain parenchyma, remains after resection and radiotherapy and the tumoral microenvironment become stiffer. GSC invasion is reported as stiffness sensitive and associated with altered N-glycosylation pattern. Glycocalyx thickness modulates integrins mechanosensing, but details remain elusive and glycosylation enzymes involved are unknown. Here, we studied the association between matrix stiffness modulation, GSC migration and MGAT5 induced N-glycosylation in fibrillar 3D context. METHOD: To mimic the extracellular matrix fibrillar microenvironments, we designed 3D-ex-polyacrylonitrile nanofibers scaffolds (NFS) with adjustable stiffnesses by loading multiwall carbon nanotubes (MWCNT). GSCs neurosphere were plated on NFSs, allowing GSCs migration and MGAT5 was deleted using CRISPR-Cas9. RESULTS: We found that migration of GSCs was maximum at 166 kPa. Migration rate was correlated with cell shape, expression and maturation of focal adhesion (FA), Epithelial to Mesenchymal Transition (EMT) proteins and (ß1,6) branched N-glycan binding, galectin-3. Mutation of MGAT5 in GSC inhibited N-glycans (ß1-6) branching, suppressed the stiffness dependence of migration on 166 kPa NFS as well as the associated FA and EMT protein expression. CONCLUSION: MGAT5 catalysing multibranched N-glycans is a critical regulators of stiffness induced invasion and GSCs mechanotransduction, underpinning MGAT5 as a serious target to treat cancer.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologia , Fenótipo
2.
Sci Rep ; 9(1): 14612, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601895

RESUMO

Glioblastoma Multiforme (GBM) invasiveness renders complete surgical resection impossible and highly invasive Glioblastoma Initiating Cells (GICs) are responsible for tumour recurrence. Their dissemination occurs along pre-existing fibrillary brain structures comprising the aligned myelinated fibres of the corpus callosum (CC) and the laminin (LN)-rich basal lamina of blood vessels. The extracellular matrix (ECM) of these environments regulates GIC migration, but the underlying mechanisms remain largely unknown. In order to recapitulate the composition and the topographic properties of the cerebral ECM in the migration of GICs, we have set up a new aligned polyacrylonitrile (PAN)-derived nanofiber (NF) scaffold. This system is suitable for drug screening as well as discrimination of the migration potential of different glioblastoma stem cells. Functionalisation with LN increases the spatial anisotropy of migration and modulates its mode from collective to single cell migration. Mechanistically, equally similar to what has been observed for mesenchymal migration of GBM in vivo, is the upregulation of galectin-3 and integrin-ß1 in Gli4 cells migrating on our NF scaffold. Downregulation of Calpain-2 in GICs migrating in vivo along the CC and in vitro on LN-coated NF underlines a difference in the turnover of focal adhesion (FA) molecules between single-cell and collective types of migration.


Assuntos
Neoplasias Encefálicas/patologia , Galectina 3/metabolismo , Glioblastoma/patologia , Integrina beta1/metabolismo , Células-Tronco Neoplásicas/patologia , Alicerces Teciduais/química , Resinas Acrílicas/química , Animais , Proteínas Sanguíneas , Adesão Celular , Movimento Celular , Corpo Caloso/metabolismo , Galectinas , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Laminina/metabolismo , Camundongos , Camundongos Nus , Nanofibras/química , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos
3.
EClinicalMedicine ; 1: 51-61, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31193689

RESUMO

BACKGROUND: Iodinated and gadolinium-based contrast media (ICM; GBCM) induce immediate hypersensitivity (IH) reactions. Differentiating allergic from non-allergic IH is crucial; allergy contraindicates the culprit agent for life. We studied frequency of allergic IH among ICM or GBCM reactors. METHODS: Patients were recruited in 31 hospitals between 2005 and 2009. Clinical symptoms, plasma histamine and tryptase concentrations and skin tests were recorded. Allergic IH was diagnosed by intradermal tests (IDT) with the culprit CM diluted 1:10, "potentially allergic" IH by positive IDT with pure CM, and non-allergic IH by negative IDT. FINDINGS: Among 245 skin-tested patients (ICM = 209; GBCM = 36), allergic IH to ICM was identified in 41 (19.6%) and to GBCM in 10 (27.8%). Skin cross-reactivity was observed in 11 patients with ICM (26.8%) and 5 with GBCM (50%). Allergy frequency increased with clinical severity and histamine and tryptase concentrations (p < 0.0001). Cardiovascular signs were strongly associated with allergy. Non-allergic IH was observed in 152 patients (62%) (ICM:134; GBCM:18). Severity grade was lower (p < 0.0001) and reaction delay longer (11.6 vs 5.6 min; p < 0.001). Potentially allergic IH was diagnosed in 42 patients (17.1%) (ICM:34; GBCM:8). The delay, severity grade, and mediator release were intermediate between the two other groups. INTERPRETATION: Allergic IH accounted for < 10% of cutaneous reactions, and > 50% of life-threatening ones. GBCM and ICM triggered comparable IH reactions in frequency and severity. Cross-reactivity was frequent, especially for GBCM. We propose considering skin testing with pure contrast agent, as it is more sensitive than the usual 1:10 dilution criteria.

4.
Biochem Pharmacol ; 86(1): 161-7, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23537700

RESUMO

Oxysterols possess anti-proliferative properties that may be used with much effect in the treatment of cancer. We have demonstrated previously that 7 beta-hydroxycholesterol (7b-HC) provokes both metabolic stress, as witnessed by AMPK activation, and changes in lipid raft composition in C6 glioblastoma cells. These observations suggested that glycolysis might have been changed. Here we will show that 7b-HC increases cell cycle time and that it changes the affinity of pyruvate kinase to its substrate, phosphoenol pyruvate. The latter effect is mimicked by glutamine withdrawal.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glutamina/metabolismo , Hidroxicolesteróis/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Neoplasias Encefálicas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Ciclina E/metabolismo , Ativação Enzimática , Glioblastoma/patologia , Glicólise , Hidroxicolesteróis/farmacologia , Fosfoenolpiruvato/metabolismo , Piruvato Quinase/metabolismo , Ratos , Estresse Fisiológico
5.
Biochem Pharmacol ; 86(1): 154-60, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23500545

RESUMO

Oxysterols have been shown to interfere with proliferation and cause the death of many cancer cell types, such as leukaemia, glioblastoma, colon, breast and prostate cancer cells, while they have little or no effect on senescent cells. The mechanisms by which oxysterols may influence proliferation are manifold: they control the transcription and the turnover of the key enzyme in cholesterol synthesis, 3-hydroxy-3-methylglutaryl CoA reductase, by binding to Insig-1, Insig-2 and liver X receptors. Oxysterols are thought to be generated in proportion to the rate of cholesterol synthesis. Although there is no consensus about the mechanism by which these oxysterols are generated in vivo, it clearly has to be ubiquitous. The 25- and the 27-cholesterol hydroxylases, present in almost all tissues, are possible candidates. Cholesterol uptake from lipoproteins, intracellular vesicle transport and lipid transfer are also modified by oxysterols. Oxysterols interfere with ERK, hedgehog and wnt pathways of proliferation and differentiation. When administered in vitro to cancer cell lines, oxysterols invariably both slow down proliferation and provoke cell death. Perhaps is it sufficient to stop proliferation of a cancer to provoke its eradication. Therefore, the two facets of oxysterol action that seem important for cancer treatment, cytostaticity and cytotoxicity, will be discussed.


Assuntos
Neoplasias/metabolismo , Esteróis/metabolismo , Transporte Biológico , Diferenciação Celular , Proliferação de Células , Colesterol/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Neoplasias/patologia , Transdução de Sinais , Vesículas Transportadoras/metabolismo , Proteínas Wnt/metabolismo
6.
Mol Endocrinol ; 26(7): 1102-16, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22570336

RESUMO

As one of the nine hereditary neurodegenerative polyQ disorders, spinal and bulbar muscular atrophy (SBMA) results from a polyQ tract expansion in androgen receptor (AR). Although protein aggregates are the pathological hallmark of many neurodegenerative diseases, their direct role in the neurodegeneration is more and more questioned. To determine the early molecular mechanisms causing motor neuron degeneration in SBMA, we established an in vitro system based on the tetracycline-inducible expression of normal (AR20Q), the mutated, 51 glutamine-extended (AR51Q), or polyQ-deleted (AR0Q) AR in NSC34, a motor neuron-like cell line lacking endogenous AR. Although no intracellular aggregates were formed, the expression of the AR51Q leads to a loss of function characterized by reduced neurite outgrowth and to a toxic gain of function resulting in decreased cell viability. In this study, we show that both AR20Q and AR51Q are recruited to lipid rafts in response to testosterone stimulation. However, whereas testosterone induces the activation of the c-jun N-terminal kinase/c-jun pathway via membrane-associated AR20Q, it does not so in NSC34 expressing AR51Q. Phosphorylation of c-jun N-terminal kinase plays a crucial role in AR20Q-dependent survival and differentiation of NSC34. Moreover, c-jun protein levels decrease more slowly in AR20Q- than in AR51Q-expressing NSC34 cells. This is due to a rapid and transient inhibition of glycogen synthase kinase 3α occurring in a phosphatidylinositol 3-kinase-independent manner. Our results demonstrate that the deregulation of nongenomic AR signaling may be involved in SBMA establishment, opening new therapeutic perspectives.


Assuntos
Transtornos Musculares Atróficos/metabolismo , Receptores Androgênicos/metabolismo , Testosterona/metabolismo , Animais , Linhagem Celular , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Peptídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Transdução de Sinais
7.
J Neurosci Res ; 87(1): 50-60, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18752296

RESUMO

Primary cultures of motoneurons represent a good experimental model for studying mechanisms underlying certain spinal cord pathologies, such as amyotrophic lateral sclerosis and spinal bulbar muscular atrophy (Kennedy's disease). However, a major problem with such culture systems is the relatively short cell survival times, which limits the extent of motoneuronal maturation. In spite of supplementing culture media with various growth factors, it remains difficult to maintain motoneurons viable longer than 10 days in vitro. This study employs a new approach, in which rat motoneurons are plated on a layer of cultured cells derived from newborn human spinal cord. For all culture periods, more motoneurons remain viable in such cocultures compared with control monocultures. Moreover, although no motoneurons survive in control cultures after 22 days, viable motoneurons were observed in cocultures even after 7 weeks. Although no significant difference in neurite length was observed between 8-day mono- and cocultures, after 22 and 50 days in coculture motoneurons had a very mature morphology. They extended extremely robust, very long neurites, which formed impressive branched networks. Data obtained using a system in which the spinal cord cultures were separated from motoneurons by a porous polycarbonate filter suggest that soluble factors released from the supporting cells are in part responsible for the beneficial effects on motoneurons. Several approaches, including immunocytochemistry, immunoblotting, and electron microscopy, indicated that these supporting cells, capable of extending motoneuron survival and enhancing neurite growth, had an undifferentiated or poorly differentiated, possibly mesenchymal phenotype.


Assuntos
Neurônios Motores/fisiologia , Neurogênese/fisiologia , Medula Espinal/citologia , Células-Tronco/fisiologia , Animais , Sobrevivência Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura/métodos , Embrião de Mamíferos , Fibroblastos/química , Fibroblastos/fisiologia , Humanos , Recém-Nascido , Masculino , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/metabolismo , Neuritos/fisiologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura
8.
J Neurochem ; 100(6): 1589-98, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17217419

RESUMO

This study aimed to provide detailed data on mitochondrial respiration of normal astrocyte cell lines derived from rat embryonic spinal cord. Astrocytes in early passages (EP), cultured without pyruvate for more than 35 passages, defined here as late passages (LP), undergo spontaneous transformation. To study initial steps in cell transformation, EP data were compared with those of LP cells. LP cells had reduced glycolysis, fewer mitochondria and extremely low oxidative rates, resulting from a dysfunction of complexes I and II + III of the respiratory chain. Treatment of EP cells with pyruvate until they were, by definition, LP cultures prevented transformation of these cells. Pyruvate-treated EP cells had more mitochondria than normal cells but slightly lower respiratory rates. The increase of mitochondrial content thus appears to act as a compensatory effect to maintain oxidative phosphorylation in these LP 'non-transformed' cells, in which mitochondrial function is reduced. However, pyruvate treatment of transformed LP cells during additional passages did not significantly restore their oxidative metabolism. These data highlight changes accompanying spontaneous astrocyte transformation and suggest potential targets for the control of astrocyte proliferation and reaction to various insults to the central nervous system.


Assuntos
Envelhecimento/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Ácido Pirúvico/farmacologia , Medula Espinal/citologia , Envelhecimento/fisiologia , Animais , Astrócitos/ultraestrutura , Células Cultivadas , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Embrião de Mamíferos , Consumo de Oxigênio/efeitos dos fármacos , Ácido Pirúvico/metabolismo , Ratos
9.
Neuroendocrinology ; 80(5): 284-97, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15677879

RESUMO

The aim of this study was to examine the expression of aromatase and receptors to steroid hormones in cultured motoneurons (MNs). We first developed an original method for obtaining rat MN cultures. Dissociated E15 rat spinal cords were purified using metrizamide and bovine serum albumin density gradients, and cells were then seeded on the culture substratum. We optimized the culture parameters and found that simple addition of rat muscle extract (ME) and conditioned culture medium (CM) from glial cell lines (GCL) derived from spinal cord were sufficient to obtain almost pure MN cultures. MNs were characterized by the presence of specific MN markers and electrophysiology. MNs could be kept alive for 2 weeks. We demonstrate that ME and CM are essential for MN development and survival respectively. Immunocytochemistry and aromatase activity assay indicated the presence of androgen and estrogen receptors as well as aromatase in MNs but not in GCL. This is the first report demonstrating the presence of both female and male sex hormone receptors and a key enzyme in steroid hormone metabolism in MNs and its absence in GCL, at least in our culture conditions. This in vitro model appears to be valuable for elucidating the impact of the sex hormone circuit in neuronal maturation. The relevance of this model for the comprehension of neurodegenerative diseases is discussed.


Assuntos
Aromatase/metabolismo , Técnicas de Cultura de Células , Neurônios Motores/metabolismo , Neuroglia/metabolismo , Receptores de Esteroides/metabolismo , Medula Espinal/citologia , Animais , Western Blotting , Sobrevivência Celular , Células Cultivadas , Meios de Cultivo Condicionados , Eletroforese em Gel de Poliacrilamida , Embrião de Mamíferos , Imuno-Histoquímica , Potenciais da Membrana/fisiologia , Músculo Esquelético/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
10.
Mol Cell Neurosci ; 22(4): 467-86, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12727444

RESUMO

p120 catenin (p120ctn) is implicated in the regulation of cadherin-mediated adhesion and actin cytoskeleton remodeling. The interaction of cytoplasmic p120ctn with the guanine exchange factor Vav2 is one of the signaling pathways implicated in cytoskeleton dynamics. We show here that p120ctn is regulated during rat brain development and is distributed at the membrane and within the cytoplasm where it associates with N-cadherin and Vav2, respectively. p120ctn shifts progressively from an axonal expression to a punctuate staining localized to a subset of synapses. In cultured hippocampal neurons, p120ctn redistributes from growth cones to synapses, where it partly colocalizes with N-cadherin or Vav2 and filamentous actin. In the adult forebrain, we show that p120ctn and Vav2 are highly expressed by neuroblasts migrating from the lateral subventricular zone to the olfactory bulb. The dynamic expression pattern of p120ctn and the biochemical evidences of its association with N-cadherin and Vav2 strongly suggest that p120ctn plays a major role in neuronal migration, neurite outgrowth and synapse formation, and plasticity.


Assuntos
Citoesqueleto de Actina/metabolismo , Encéfalo/embriologia , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Vias Neurais/embriologia , Fosfoproteínas/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Cateninas , Compartimento Celular/fisiologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Movimento Celular/fisiologia , Células Cultivadas , Feto , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Imuno-Histoquímica , Microscopia Confocal , Microscopia Eletrônica , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Plasticidade Neuronal/fisiologia , Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-vav , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Células-Tronco/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , delta Catenina
11.
Biochem Pharmacol ; 64(4): 733-40, 2002 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12167492

RESUMO

The binding of two antitumour alkaloids, vinorelbine and vinflunine, to the alpha/beta-tubulin dimer has been investigated at equilibrium by nuclear magnetic resonance (NMR) spectroscopy. Tubulin stability and assembly induced by these drugs has been checked under NMR experimental conditions, and tubulin spirals were found in majority. Then, using increasing ligand concentrations, the alkaloids were titrated against tubulin. A non-specific binding of both compounds to tubulin (K(d)>10(-5)M) was characterised by broad NMR ligand signal at 4 and 30 degrees. The tubulin dimer exhibited also 2.7 (sigma: 0.3) and 2.6 (sigma: 0.6) binding sites with a K(d)<10(-5)M for vinorelbine at 4 and 30 degrees, respectively. In contrast, if the tubulin dimer exhibited 2.7 (sigma: 0.2) binding sites for vinflunine at 4 degrees, these sites were not detected at 30 degrees. This NMR study revealed for the first time the presence of specific binding sites and a clear differential affinity of vinorelbine and vinflunine to the tubulin dimer at physiological temperatures which could possibly account for their differential cytotoxicity.


Assuntos
Tubulina (Proteína)/metabolismo , Vimblastina/análogos & derivados , Vimblastina/metabolismo , Animais , Antineoplásicos Fitogênicos/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Sítios de Ligação , Dimerização , Espectroscopia de Ressonância Magnética , Conformação Molecular , Peso Molecular , Ovinos , Vimblastina/farmacologia , Vinorelbina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...