Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 3402, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233062

RESUMO

Medical research is progressing to clarify the full spectrum of sub-acute and long-term effects of the post-COVID-19 syndrome. However, most manuscripts published to date only analyze the effects of post-COVID-19 in patients discharged from hospital, which may induce significant bias. Here, we propose a pioneering study to analyze the single and multiple associations between post-COVID-19 characteristics with up to 6-months of follow-up in hospitalized and non-hospitalized COVID-19 patients. The cohort study was conducted from May to October 2020 at the University Hospital Virgen de la Nieves, the leading hospital assigned for patients with COVID-19 in Granada, Spain. A total of 372 and 217 patients-with 217 and 207 included in the first and second follow-up visits-were referred 2 and 6 months after diagnosing COVID-19, respectively. We find out that post-COVID-19 clinical and mental health impairment symptoms are correlated with patient gender. Logistic adjustments showed strong statistically robust single and multiple associations of demographic, clinical, mental health, X-ray, laboratory indices, and pulmonary function variables. The functional lung tests are good predictors of chest CT imaging abnormalities in elderly patients. Bilateral lung involvement, subpleural reticulum, ground-glass opacity, peripheral lung lesions, and bronchiectasis were the most common findings of the high-resolution computed tomography images. Non-hospitalized patients suffer more severe thromboembolic events and fatigue than those hospitalized.


Assuntos
COVID-19/complicações , Hospitalização , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , COVID-19/diagnóstico por imagem , COVID-19/epidemiologia , COVID-19/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Espanha/epidemiologia , Síndrome de COVID-19 Pós-Aguda
2.
Nanoscale ; 13(44): 18754-18762, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34747424

RESUMO

Shewanella oneidensis MR-1 is a metal-reducing bacterium that is able to exchange electrons with solid-phase minerals outside the cell. These bacterial cells can produce outer membrane extensions (OMEs) that are tens of nanometers wide and several microns long. The capability of these OMEs to transport electrons is currently under investigation. Tubular chemically fixed OMEs from S. oneidensis have shown good dc conducting properties when measured in an air environment. However, no direct demonstration of the conductivity of the more common bubble-like OMEs has been provided yet, due to the inherent difficulties in measuring it. In the present work, we measured the electrical properties of bubble-like OMEs in a dry air environment by Scanning Dielectric Microscopy (SDM) in force detection mode. We found that at the frequency of the measurements (∼2 kHz), OMEs show an insulating behavior, with an equivalent homogeneous dielectric constant εOME = 3.7 ± 0.7 and no dephasing between the applied ac voltage and the measured ac electric force. The dielectric constant measured for the OMEs is comparable to that obtained for insulating supramolecular protein structures (εprotein = 3-4), pointing towards a rich protein composition of the OMEs, probably coming from the periplasm. Based on the detection sensitivity of the measuring instrument, the upper limit for the ac longitudinal conductivity of bubble-like OMEs in a dry air environment has been set to σOME,ac < 10-5 S m-1, a value several orders of magnitude smaller than the dc conductivity measured in tubular chemically fixed OMEs. The lack of conductivity of bubble-like OMEs can be attributed to the relatively large separation between cytochromes in these larger OMEs and to the suppression of cytochrome mobility due to the dry environmental conditions.


Assuntos
Shewanella , Transporte de Elétrons , Elétrons , Periplasma/metabolismo
3.
Nanoscale ; 13(22): 10116-10126, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34060583

RESUMO

Polymer nanocomposite materials based on metallic nanowires are widely investigated as transparent and flexible electrodes or as stretchable conductors and dielectrics for biosensing. Here we show that Scanning Dielectric Microscopy (SDM) can map the depth distribution of metallic nanowires within the nanocomposites in a non-destructive way. This is achieved by a quantitative analysis of sub-surface electrostatic force microscopy measurements with finite-element numerical calculations. As an application we determined the three-dimensional spatial distribution of ∼50 nm diameter silver nanowires in ∼100 nm-250 nm thick gelatin films. The characterization is done both under dry ambient conditions, where gelatin shows a relatively low dielectric constant, εr∼ 5, and under humid ambient conditions, where its dielectric constant increases up to εr∼ 14. The present results show that SDM can be a valuable non-destructive subsurface characterization technique for nanowire-based nanocomposite materials, which can contribute to the optimization of these materials for applications in fields such as wearable electronics, solar cell technologies or printable electronics.

4.
Nanoscale ; 11(43): 20809-20819, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31657419

RESUMO

Mapping the dielectric constant at the nanoscale of samples showing a complex topography, such as non-planar nanocomposite materials or single cells, poses formidable challenges to existing nanoscale dielectric microscopy techniques. Here we overcome these limitations by introducing Scanning Dielectric Force Volume Microscopy. This scanning probe microscopy technique is based on the acquisition of electrostatic force approach curves at every point of a sample and its post-processing and quantification by using a computational model that incorporates the actual measured sample topography. The technique provides quantitative nanoscale images of the local dielectric constant of the sample with unparalleled accuracy, spatial resolution and statistical significance, irrespectively of the complexity of its topography. We illustrate the potential of the technique by presenting a nanoscale dielectric constant map of a single bacterial cell, including its small-scale appendages. The bacterial cell shows three characteristic equivalent dielectric constant values, namely, εr,bac1 = 2.6 ± 0.2, εr,bac2 = 3.6 ± 0.4 and εr,bac3 = 4.9 ± 0.5, which enable identifying different dielectric properties of the cell wall and of the cytoplasmatic region, as well as, the existence of variations in the dielectric constant along the bacterial cell wall itself. Scanning Dielectric Force Volume Microscopy is expected to have an important impact in Materials and Life Sciences where the mapping of the dielectric properties of samples showing complex nanoscale topographies is often needed.


Assuntos
Capacitância Elétrica , Microscopia de Força Atômica/métodos , Pseudomonas aeruginosa/química , Parede Celular/química , Microesferas , Nanotecnologia , Pseudomonas aeruginosa/metabolismo , Dióxido de Silício/química , Propriedades de Superfície
5.
Nanoscale ; 10(40): 19188-19194, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30302472

RESUMO

The dielectric constant of flagellin proteins in flagellar bacterial filaments ∼10-20 nm in diameter is measured using scanning dielectric microscopy. We obtained for two different bacterial species (Shewanella oneidensis MR-1 and Pseudomonas aeruginosa PAO1) similar relative dielectric constant values εSo = 4.3 ± 0.6 and εPa = 4.5 ± 0.7, respectively, despite their different structure and amino acid sequence. The present results show the applicability of scanning dielectric microscopy to nanoscale filamentous protein complexes and to general 3D macromolecular protein geometries, thus opening new avenues to study the relationship between the dielectric response and protein structure and function.

6.
Sci Rep ; 7(1): 16064, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167422

RESUMO

A three-dimensional finite element numerical modeling for the scanning microwave microscopy (SMM) setup is applied to study the full-wave quantification of the local material properties of samples. The modeling takes into account the radiation and scattering losses of the nano-sized probe neglected in previous models based on low-frequency assumptions. The scanning techniques of approach curves and constant height are implemented. In addition, we conclude that the SMM has the potential for use as a broadband dielectric spectroscopy operating at higher frequencies up to THz. The results demonstrate the accuracy of previous models. We draw conclusions in light of the experimental results.

7.
Phys Chem Chem Phys ; 19(5): 3884-3893, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28106185

RESUMO

We obtained maps of electric permittivity at ∼19 GHz frequencies on non-planar thin film heterogeneous samples by means of combined atomic force-scanning microwave microscopy (AFM-SMM). We show that the electric permittivity maps can be obtained directly from the capacitance images acquired in contact mode, after removing the topographic cross-talk effects. This result demonstrates the possibility of identifying the electric permittivity of different materials in a thin film sample irrespectively of their thickness by just direct imaging and processing. We show, in addition, that quantitative maps of the electric permittivity can be obtained with no need for any theoretical calculation or complex quantification procedures when the electric permittivity of one of the materials is known. To achieve these results the use of contact mode imaging is a key factor. For non-contact imaging modes the effects of local sample thickness and of the imaging distance make the interpretation of the capacitance images in terms of the electric permittivity properties of the materials much more complex. The present results represent a substantial contribution to the field of nanoscale microwave dielectric characterization of thin film materials with important implications for the characterization of novel 3D electronic devices and 3D nanomaterials.

8.
ACS Nano ; 10(12): 11327-11336, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28024372

RESUMO

We show that the internal hydration properties of single Bacillus cereus endospores in air under different relative humidity (RH) conditions can be determined through the measurement of its electric permittivity by means of quantitative electrostatic force microscopy (EFM). We show that an increase in the RH from 0% to 80% induces a large increase in the equivalent homogeneous relative electric permittivity of the bacterial endospores, from ∼4 up to ∼17, accompanied only by a small increase in the endospore height, of just a few nanometers. These results correlate the increase of the moisture content of the endospore with the corresponding increase of environmental RH. Three-dimensional finite element numerical calculations, which include the internal structure of the endospores, indicate that the moisture is mainly accumulated in the external layers of the endospore, hence preserving the core of the endospore at low hydration levels. This mechanism is different from what we observe for vegetative bacterial cells of the same species, in which the cell wall at high humid atmospheric conditions is not able to preserve the cytoplasmic region at low hydration levels. These results show the potential of quantitative EFM under environmental humidity control to study the hygroscopic properties of small-scale biological (and nonbiological) entities and to determine its internal hydration state. A better understanding of nanohygroscopic properties can be of relevance in the study of essential biological processes and in the design of bionanotechnological applications.


Assuntos
Microscopia de Força Atômica , Esporos Bacterianos , Bacillus cereus , Eletricidade Estática
9.
ACS Nano ; 10(1): 280-8, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26643251

RESUMO

We quantified the electric permittivity of single bacterial cells at microwave frequencies and nanoscale spatial resolution by means of near-field scanning microwave microscopy. To this end, calibrated complex admittance images have been obtained at ∼19 GHz and analyzed with a methodology that removes the nonlocal topographic cross-talk contributions and thus provides quantifiable intrinsic dielectric images of the bacterial cells. Results for single Escherichia coli cells provide a relative electric permittivity of ∼4 in dry conditions and ∼20 in humid conditions, with no significant loss contributions. Present findings, together with the ability of microwaves to penetrate the cell membrane, open an important avenue in the microwave label-free imaging of single cells with nanoscale spatial resolution.


Assuntos
Escherichia coli/ultraestrutura , Microscopia/métodos , Análise de Célula Única/métodos , Capacitância Elétrica , Condutividade Elétrica , Escherichia coli/fisiologia , Microscopia/instrumentação , Micro-Ondas , Análise de Célula Única/instrumentação
10.
J R Soc Interface ; 11(100): 20140809, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25232054

RESUMO

A multi-dimensional model for dental caries is applied to study the shape of caries lesions in a realistic tooth geometry and to examine the rate of progress of caries. An upgraded model, taking into account the outer prismless enamel layer, is derived and solved. The model demonstrates the importance of this layer in delaying the onset of caries. The conclusions are discussed in light of experimental results.


Assuntos
Cárie Dentária/patologia , Cárie Dentária/fisiopatologia , Modelos Biológicos , Dente/patologia , Dente/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...