Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(22): 8530-8542, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29661935

RESUMO

The ubiquitous cellular labile iron pool (LIP) is often associated with the production of the highly reactive hydroxyl radical, which forms through a redox reaction with hydrogen peroxide. Peroxynitrite is a biologically relevant peroxide produced by the recombination of nitric oxide and superoxide. It is a strong oxidant that may be involved in multiple pathological conditions, but whether and how it interacts with the LIP are unclear. Here, using fluorescence spectroscopy, we investigated the interaction between the LIP and peroxynitrite by monitoring peroxynitrite-dependent accumulation of nitrosated and oxidized fluorescent intracellular indicators. We found that, in murine macrophages, removal of the LIP with membrane-permeable iron chelators sustainably accelerates the peroxynitrite-dependent oxidation and nitrosation of these indicators. These observations could not be reproduced in cell-free assays, indicating that the chelator-enhancing effect on peroxynitrite-dependent modifications of the indicators depended on cell constituents, presumably including LIP, that react with these chelators. Moreover, neither free nor ferrous-complexed chelators stimulated intracellular or extracellular oxidative and nitrosative chemistries. On the basis of these results, LIP appears to be a relevant and competitive cellular target of peroxynitrite or its derived oxidants, and thereby it reduces oxidative processes, an observation that may change the conventional notion that the LIP is simply a cellular source of pro-oxidant iron.


Assuntos
Quelantes de Ferro/química , Ferro/farmacologia , Macrófagos/patologia , Óxido Nítrico/metabolismo , Oxidantes/química , Ácido Peroxinitroso/química , Superóxidos/química , Animais , Células Cultivadas , Quelantes de Ferro/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Nitrosação , Oxidantes/metabolismo , Oxirredução , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo
2.
Free Radic Biol Med ; 77: 270-80, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25242205

RESUMO

In this study, we examined the mechanisms and kinetic profiles of intracellular nitrosative processes using diaminofluorescein (DAF-2) as a target in RAW 264.7 cells. The intracellular formation of the fluorescent, nitrosated product diaminofluorescein triazol (DAFT) from both endogenous and exogenous nitric oxide (NO) was prevented by deoxygenation and by cell membrane-permeable superoxide (O2(-)) scavengers but not by extracellular bovine Cu,Zn-SOD. In addition, the DAFT formation rate decreased in the presence of cell membrane-permeable Mn porphyrins that are known to scavenge peroxynitrite (ONOO(-)) but was enhanced by HCO3(-)/CO2. Together, these results indicate that nitrosative processes in RAW 264.7 cells depend on endogenous intracellular O2(-) and are stimulated by ONOO(-)/CO2-derived radical oxidants. The N2O3 scavenger sodium azide (NaN3) only partially attenuated the DAFT formation rate and only with high NO (>120 nM), suggesting that DAFT formation occurs by nitrosation (azide-susceptible DAFT formation) and predominantly by oxidative nitrosylation (azide-resistant DAFT formation). Interestingly, the DAFT formation rate increased linearly with NO concentrations of up to 120-140 nM but thereafter underwent a sharp transition and became insensitive to NO. This behavior indicates the sudden exhaustion of an endogenous cell substrate that reacts rapidly with NO and induces nitrosative processes, consistent with the involvement of intracellular O2(-). On the other hand, intracellular DAFT formation stimulated by a fixed flux of xanthine oxidase-derived extracellular O2(-) that also occurs by nitrosation and oxidative nitrosylation increased, peaked, and then decreased with increasing NO, as previously observed. Thus, our findings complementarily show that intra- and extracellular O2(-)-dependent nitrosative processes occurring by the same chemical mechanisms do not necessarily depend on NO concentration and exhibit different unusual kinetic profiles with NO dynamics, depending on the biological compartment in which NO and O2(-) interact.


Assuntos
Fluoresceína/metabolismo , Corantes Fluorescentes/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/farmacologia , Animais , Técnicas Biossensoriais , Linhagem Celular , Fluoresceína/química , Corantes Fluorescentes/química , Cinética , Camundongos , Nitrosação , Consumo de Oxigênio , Tirosina/análogos & derivados , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...