Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Esthet Restor Dent ; 36(7): 1038-1049, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488256

RESUMO

OBJECTIVE: Color Adjustment Potential evaluates the color blending of dental Composite Resins. While Color Adjustment Potential is simple, its clinical relevance is unclear. This research aims to understand it better and to create an index for Composite Resins with meaningful clinical interpretation. MATERIALS AND METHODS: Single and double shade composite disks of various diameters and opacities were created to test the indices. Color measurements used a dental colorimeter, avoiding subjective assessments. Color Adjustment Potential analysis of each material revealed insights, leading to the creation of a new Color Blending Threshold, providing a clinically relevant numerical value for Composite Resins. RESULTS: Color Adjustment Potential's numerical significance was clarified and introduced a new index for clinical applications. Color adaptation of each test shade to all Vita shades was also calculated, useful for single-shade restorations in open and closed cavity types. CONCLUSIONS: The proposed Color Blending Threshold defines the open/closed cavity dimension that can be adequately restored with a single shade of resin composite. CLINICAL SIGNIFICANCE: Understanding how dental materials adapt to surrounding tooth colors enhances esthetic restorations, simplifies shade matching, and optimizes resin composite production. The proposed Color Blending Threshold is a parameter that directly relates to the clinical significance of a material's true color blending ability. It defines the cavity dimension that can be adequately restored with a single shade of resin composite while ensuring that the resulting color difference falls below a predetermined threshold, meeting the clinical requirements for an esthetic restoration.


Assuntos
Cor , Resinas Compostas , Resinas Compostas/química , Teste de Materiais , Humanos
2.
Bull Entomol Res ; 110(1): 161-168, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31337456

RESUMO

The tettigoniid Barbitistes vicetinus Galvagni & Fontana was described in 1993 as an endemic and rare bush-cricket of north-east Italy. Since 2008, this species has become a pest, causing repeated outbreaks with severe defoliations in broadleaf forests and neighbouring crops. Few data are currently available on ecology and life-cycle of this species, in particular about how temperature regulates egg-diapause and hatching phenology. The present work reports a field study regarding hatching phenology of B. vicetinus, surveyed with 84 emergence traps over four consecutive years (2013-2016). Moreover, the effect of temperature on the hatching was tested in the laboratory, exposing eggs to different temperatures. Field observations showed that hatching occurred between the end of March and beginning of April. In warmer years, hatching started early in the spring and lasted longer, while in colder years, hatching started later and was concentrated in a few days. Moreover, a significant effect of both elevation and exposure on the hatching start was observed. Results obtained from laboratory suggested the ability of the species to develop in the post-final diapause in a wide range of thermal conditions. After the diapause (terminated by a prolonged common exposure to low temperature) B. vicetinus was able to hatch from 6 to 23°C although, due to prolonged post-diapause development, hatching took place progressively later at colder temperatures. To manage B. vicetinus outbreaks, forecasting the seasonal phenology of egg hatching and its duration is important for an effective pest control.


Assuntos
Diapausa de Inseto , Gryllidae/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Animais , Feminino , Masculino , Temperatura
3.
Bull Entomol Res ; 109(3): 300-308, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30269692

RESUMO

The Asian chestnut gall wasp, Dryocosmus kuriphilus, is an invasive pest causing significant damage to chestnut trees (Castanea spp., Fagaceae). Originating from China, it has recently invaded a wide range of regions in Europe and North America. Understanding the population genetic structure of important invasive pests is very useful for improving the knowledge concerning routes of expansion and colonizing capacity. Despite its economic importance, limited attention has been given to D. kuriphilus origin and spread, or to its genetic structure. In this study, D. kuriphilus populations sampled in eight European countries were screened using both mitochondrial (cytochrome c oxidase subunit 1; COI) and nuclear (internal transcribed spacer 2; ITS2) sequences, and Amplified Fragment Length Polymorphism (AFLP) markers. The molecular markers COI and ITS2 highlighted the presence of a single haplotype in all the studied populations. The recorded mitochondrial haplotype was identical to one of the most widespread haplotypes occurring in the native area (China). AFLP results indicated that D. kuriphilus individuals belong to two genetically distinct clusters without any further geographic clustering. These results suggest that D. kuriphilus populations in Europe could be the result of a single introduction of a Chinese founder population characterized by two genetically distinct lineages that subsequently spread rapidly across Europe. However, the possibility that populations originated from multiple introductions of the same Chinese mitochondrial haplotype cannot be excluded. The reported results provide useful information concerning this invasive species, potentially facilitating integrated pest management.


Assuntos
Distribuição Animal , Espécies Introduzidas , Vespas/classificação , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Código de Barras de DNA Taxonômico , DNA Mitocondrial , DNA Espaçador Ribossômico , Europa (Continente) , Fagaceae/parasitologia , Haplótipos , Análise de Sequência de DNA , Vespas/genética
4.
Bull Entomol Res ; 106(3): 359-67, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27241229

RESUMO

The Asian long-horned beetle (ALB), Anoplophora glabripennis (Motschulsky), is a highly polyphagous invasive pest with a broad range of host species, but showing relevant differences between infestation areas. Host preference and host colonization (female fecundity, egg and larval survival) were assessed in a population in Northern Italy by choice and no-choice experiments conducted in both field and laboratory conditions. During 5 years of field observations, ALB was found to infest seven genera of trees: Acer, Aesculus, Betula, Populus, Prunus, Salix and Ulmus. However, Acer, Betula, Ulmus and Salix resulted to be the preferred hosts corresponding to 97.5% (1112) of the 1140 infested trees. In both laboratory and field trials carried out on these four host genera, no-choice experiments recorded the highest host colonization of A. glabripennis on Acer trees, with the highest number of laid eggs and the lowest egg and larval mortality. Ulmus and Salix showed a lower number of laid eggs during laboratory choice test, but egg and larval mortality had mean values similar to Acer. On the contrary, despite the high number of Betula trees felled during the eradication plan carried out in the infestation area, this tree species showed the lowest beetle suitability in terms of number of laid eggs and insect survival. An overestimation of the number of infested Betula occurring during the tree survey may explain the discordance between high number of infested Betula and low beetle suitability. Instead, the large number of infested Acer recorded in the field was probably due to the high abundance of these trees occurring in parks and gardens within the infestation area and to the low adult dispersal of A. glabripennis. Overall, results from this study confirm that host species affects both beetle colonization and breeding performance. The study shows ALB host preference and host suitability varying between tree species, suggesting an ALB acceptance even of sub-optimal hosts.


Assuntos
Besouros/fisiologia , Cadeia Alimentar , Herbivoria , Árvores , Animais , Besouros/crescimento & desenvolvimento , Comportamento Alimentar , Feminino , Itália , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Especificidade da Espécie , Árvores/crescimento & desenvolvimento
5.
Mol Phylogenet Evol ; 90: 67-79, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25959751

RESUMO

Several insect lineages have evolved mutualistic association with symbiotic bacteria. This is the case of some species of mealybugs, whiteflies, weevils, tsetse flies, cockroaches, termites, carpenter ants, aphids and fruit flies. Some species of Tephritinae, the most specialized subfamily of fruit flies (Diptera: Tephritidae), harbour co-evolved vertically transmitted, bacterial symbionts in their midgut, known as "Candidatus Stammerula spp.". The 25 described endemic species of Hawaiian tephritids, plus at least three undescribed species, are taxonomically distributed among three genera: the cosmopolitan genus Trupanea (21 described spp.), the endemic genus Phaeogramma (2 spp.) and the Nearctic genus Neotephritis (2 spp.). We examined the presence of symbiotic bacteria in the endemic tephritids of the Hawaiian Islands, which represent a spectacular example of adaptive radiation, and tested the concordant evolution between host and symbiont phylogenies. We detected through PCR assays the presence of specific symbiotic bacteria, designated as "Candidatus Stammerula trupaneae", from 35 individuals of 15 species. The phylogeny of the insect host was reconstructed based on two regions of the mitochondrial DNA (16S rDNA and COI-tRNALeu-COII), while the bacterial 16S rRNA was used for the symbiont analysis. Host and symbiont phylogenies were then compared and evaluated for patterns of cophylogeny and strict cospeciation. Topological congruence between Hawaiian Tephritinae and their symbiotic bacteria phylogenies suggests a limited, but significant degree of host-symbiont cospeciation. We also explored the character reconstruction of three host traits, as island location, host lineage, and host tissue attacked, based on the symbiont phylogenies under the hypothesis of cospeciation.


Assuntos
Bactérias/classificação , Tephritidae/classificação , Animais , Bactérias/genética , Evolução Biológica , DNA Bacteriano/análise , DNA Mitocondrial/análise , Havaí , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose , Tephritidae/genética , Tephritidae/microbiologia
6.
Plant Dis ; 98(10): 1445, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30703957

RESUMO

Thousand cankers disease (TCD) is a disease complex caused by the fungus Geosmithia morbida Kolarik (Ascomycota, Hypocreales) and its vector Pityophthorus juglandis Blackman 1928 (Coleoptera, Scolytinae; walnut twig beetle, WTB). Since the mid-1990s, the disease was responsible for widespread mortality of many walnut species in the United States (4). After the first detection of TCD on black walnut (Juglans nigra L.) in Italy (3), an extensive survey was activated in cooperation with the Regional Phytosanitary Service. In May 2014, early TCD symptoms (4) were observed on English walnuts (J. regia L.). Canopies showed yellowing, wilting, and dieback of the youngest twigs, and a number of small brown cankers. Longitudinal and radial sections sampled through the cankers revealed gray to brown discoloration of both phloem and bark, and the presence of bark beetle galleries. Xylem discoloration was never observed. From one ~20-year-old European walnut growing in a garden neighboring an infected black walnut plantation (Santorso, Vicenza, 45°72' N, 11°40' E), a number of 1- to 2.5-cm-diameter twigs showing cankers up to 2 cm long surrounding bark beetle holes were collected. Whitish mycelium producing verticillate conidiophores was detected inside the insect galleries. From the necrotic margin of eight cankers previously surface-sterilized with 3% sodium hypochlorite, two 4-mm-wide chips per canker were placed on potato dextrose agar and incubated at 28 ± 1°C in the dark. Slow growing lobate, plane, yellowish-ocher colonies with hyaline mycelium appeared in 5 days. After subculturing to the same medium, growth features, mycelium, conidiophores, and conidia with morphological characteristics matching Kolarik's description of G. morbida (2) were observed. The ITS region of rDNA from the fungus strain LM14GM001-JR was amplified by using ITS1F and ITS4 primers and sequenced obtaining a 387-bp gene fragment. BLAST analysis showed 99% identity to the G. morbida strain U19 (GenBank Accession No. KF808301.1) for 384 bp, and 99% identity to the G. morbida strain LM13GM001-JN previously isolated from J. nigra in Italy (3). From the same samples, two emerging beetles were collected and identified as P. juglandis both morphologically (5) and genetically by DNA extraction following a standard salting out protocol. The barcode region of the mitochondrial gene cytochrome oxidase I was then amplified by using universal primers (1) and sequenced to obtain a 614-bp fragment of the gene. BLAST analysis showed 100% identity to P. juglandis based on comparison with KJ451422. A few other English walnuts with both the fungus and WTB were also found close to other infected black walnut plantations. To our knowledge, this is the first record of G. morbida and P. juglandis on J. regia in Europe, where the tree is cultivated for both fruit and timber production, as well as a traditional landscape tree. Voucher specimens are stored in the TeSAF herbarium and in the DAFNAE insect collection. References: (1) O. Folmer et al. Mol. Marine Biol. Biotechnol. 3:294, 1994. (2) M. Kolarik et al. Mycologia 103:325, 2011. (3) L. Montecchio and M. Faccoli. Plant Dis. 98:696, 2014. (4) S. J. Seybold et al. USDA Forest Service, NA-PR-02-10, 2013. (5) S. L. Wood. Great Basin Naturalist Memoirs 6:1123, 1982.

7.
Plant Dis ; 98(5): 696, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-30708556

RESUMO

Thousand cankers disease (TCD) of walnut is responsible for widespread mortality of black walnut (Juglans nigra L.) in the United States since the mid-1990s (2). The disease is caused by the fungus Geosmithia morbida Kolarik (Ascomycota, Hypocreales), vectored by the walnut twig beetle Pityophthorus juglandis Blackman 1928 (Coleoptera, Scolytinae). In September 2013, TDC was observed in northeastern Italy (Bressanvido, Vicenza, 45°39' N, 11°38' E) in black walnuts of different ages: ~80-year-old plants growing in a garden and 17-year-old trees belonging to a nearby walnut plantation for timber production. Main symptoms were yellowing, wilting, twig and branch dieback, and a high number of small bark cankers (3). Longitudinal and radial sections collected through the cankers revealed gray to brown discoloration of both phloem and outer bark, and the presence of bark beetle galleries radiating from the mating chamber and developing horizontally (across the wood grain), and vertical (along the grain) larval galleries. Occasionally, discoloration involved the outward xylematic tissues. Fungal fruiting bodies were not found on or near the cankers. Whitish mycelium, sometimes producing verticillate conidiophores, was frequently detected inside galleries. A number of 1- to 3-cm diameter twigs showing cankers up to 2 cm long surrounding bark beetle penetration holes were randomly collected. From samples, emerging beetles were identified as P. juglandis both morphologically (4) and genetically. DNA extraction was carried following a standard salting out protocol. The barcode region of the mitochondrial gene cytochrome oxydase I was then amplified using universal primers (1) and sequenced, obtaining 627 bp. BLAST analysis showed 100% identity to P. juglandis. Sequences were finally deposited in the BoldSystem database (GenBank Accession No. KF725084). From the necrotic margin of six cankers previously surface-sterilized with 3% sodium hypochlorite, two 3-mm-wide chips per canker were placed on potato dextrose agar and incubated at 23 ± 1°C in the dark. Among a variety of microorganisms, slow growing lobate, plane, yellowish-ochre colonies with hyaline mycelium appeared in 6 days. After subculturing to the same medium, growing features, mycelium, conidiophores, and conidia with morphological characteristics matching Kolarik's description of G. morbida (2) were observed. Same result was obtained culturing the mycelium growing inside the galleries. The ITS region of rDNA was amplified using ITS1F and ITS4 primers and sequenced, obtaining 597 bp. BLAST analysis showed 100% identity to G. morbida strain U173 (HF546283.1) for 558 bp. To our knowledge, this is the first record of TCD and P. juglandis to Europe, where walnut species (mainly J. regia, J. nigra, and their hybrids) are intensively cultivated for timber production. This finding is therefore of particular importance. An intensive survey of the disease is suggested, both to assess fungus/beetle presence and to verify possible pathways of introduction, likely associated to importation of infested/infected timber from native Nearctic regions. Voucher specimens are stored in the TeSAF herbarium (fungus) and in the DAFNAE insect collection. References: (1) O. Folmer et al. Mol. Marine Biol. Biotechnol. 3:294, 1994. (2) M. Kolarik et al. Mycologia 103:325, 2011. (3) C. Nischwitz and M. Murray, Utah Pests Fact Sheet, PRP-015pr, 2011. (4) S. L. Wood. Great Basin Naturalist Memoirs 6:1123, 1982.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...