Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 816: 151592, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774946

RESUMO

River deltas and their diverse array of aquatic environments are increasingly impacted by anthropogenic inputs of nitrogen (N). These inputs can alter the N biogeochemistry of these systems and promote undesirable phenomena including harmful algae blooms and invasive aquatic macrophytes. To examine N sources and biogeochemical processes in the Sacramento-San Joaquin Delta, a river delta located in central California, USA, that is fed primarily by the Sacramento River, we utilized a multi-tracer approach that measured N species concentrations and stable isotope values monthly from April 2011 to November 2012 in samples collected from the channelized mainstem of the Sacramento River, two channelized distributaries of the Sacramento River, and the Cache Slough Complex, a network of Sacramento River tributaries and shallow water wetland habitat. We found that the Sacramento River and its channelized distributaries received N primarily in the form of NH4+ from treated wastewater effluent and that NH4+ was lost rapidly while NO3- was gained more slowly during subsequent downstream transit, driven by an array of biogeochemical processes whose identities could be constrained via examination of stable isotope values. The Cache Slough Complex, which was characterized by lower net flows and higher water residence times than the Sacramento River and its distributaries, received variable inputs of low conductivity water elevated in NH4+ from the Sacramento River and higher conductivity water elevated in NO3- from landward tributaries. Deviations from expected conservative mixing of these sources were spatially variable but broadly indicative of local inputs of treated wastewater effluent NO3-, conversion of Sacramento River NH4+ to NO3- via nitrification, uptake of NH4+ and NO3- by phytoplankton, and remineralization of organic N. These findings highlight both the diversity in N dynamics in anthropogenically impacted river delta environments and the utility of a multi-tracer approach in constraining these processes in such complex systems.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Nitratos/análise , Isótopos de Nitrogênio/análise , Rios , Poluentes Químicos da Água/análise
2.
Mar Pollut Bull ; 110(1): 281-292, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27339740

RESUMO

We utilize N and C species concentration data along with δ(15)N values of NO3(-) and δ(13)C values of dissolved inorganic C to evaluate the stoichiometry of biogeochemical reactions (mineralization, nitrification, anammox, and denitrification) occurring within a subsurface wastewater plume that originates as treated wastewater injection and enters the coastal waters of Maui as submarine groundwater discharge. Additionally, we compare wastewater effluent time-series data, injection rates, and treatment history with submarine spring discharge time-series data. We find that heterotrophic denitrification is the primary mechanism of N loss within the groundwater plume and that chlorination for pathogen disinfection suppresses microbial activity in the aquifer responsible for N loss, resulting in increased coastal ocean N loading. Replacement of chlorination with UV disinfection may restore biogeochemical reactions responsible for N loss within the aquifer and return N-attenuating conditions in the effluent plume, reducing N loading to coastal waters.


Assuntos
Água Subterrânea/química , Isótopos de Nitrogênio/análise , Águas Residuárias , Isótopos de Carbono/análise , Desnitrificação , Monitoramento Ambiental/métodos , Água Subterrânea/análise , Água Subterrânea/microbiologia , Halogenação , Havaí , Análise de Séries Temporais Interrompida , Nitratos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...