Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(4)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37110365

RESUMO

Considering the objectives of "One Health" and the Sustainable development Goals "Good health and well-being" for the development of effective strategies to apply against bacterial resistance, food safety dangers, and zoonosis risks, this project explored the isolation and identification of Lactobacillus strains from the intestinal tract of recently weaned mice; as well as the assessment of antibacterial activity against clinical and zoonotic pathogens. For molecular identification, 16S rRNA gene-specific primers were used and, via BLAST-NCBI, 16 Ligilactobacillus murinus, one Ligilactobacillus animalis, and one Streptococcus salivarius strains were identified and registered in GenBank after the confirmation of their identity percentage and the phylogenetic analysis of the 16 Ligilactobacillus murinus strains and their association with Ligilactobacillus animalis. The 18 isolated strains showed antibacterial activity during agar diffusion tests against Listeria monocytogenes ATCC 15313, enteropathogenic Escherichia coli O103, and Campylobacter jejuni ATCC 49943. Electrophoretic and zymographic techniques confirmed the presence of bacteriolytic bands with a relative molecular mass of 107 kDa and another of 24 kDa in Ligilactobacillus murinus strains. UPLC-MS analysis allowed the identification of a 107 kDa lytic protein as an N-acetylmuramoyl-L-amidase involved in cytolysis and considered a bacteriolytic enzyme with antimicrobial activity. The 24 kDa band displayed similarity with a portion of protein with aminopeptidase function. It is expected that these findings will impact the search for new strains and their metabolites with antibacterial activity as an alternative strategy to inhibit pathogens associated with major health risks that help your solution.

2.
Foods ; 12(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36673323

RESUMO

Human infection by Enterohemorrhagic Escherichia coli (EHEC) constitutes a serious threat to public health and a major concern for the meat industry. Presently, consumers require safer/healthier foods with minimal chemical additives, highlighting the need for sustainable solutions to limit and prevent risks. This work evaluated the ability of two antagonistic lactic acid bacteria (LAB) strains, Lactiplantibacillus plantarum CRL681 and Enterococcus mundtii CRL35, and their combination in order to inhibit EHEC in beef (ground and vacuum sealed meat discs) at 8 °C during 72 h. The effect of lower lactic acid (LA) concentrations was evaluated. Meat color was studied along with how LAB strains interfere with the adhesion of Escherichia coli to meat. The results indicated a bacteriostatic effect on EHEC cells when mixed LAB strains were inoculated. However, a bactericidal action due to a synergism between 0.6% LA and LAB occurred, producing undetectable pathogenic cells at 72 h. Color parameters (a*, b* and L*) did not vary in bioprotected meat discs, but they were significantly modified in ground meat after 24 h. In addition, LAB strains hindered EHEC adhesion to meat. The use of both LAB strains plus 0.6% LA, represents a novel, effective and ecofriendly strategy to inactivate EHEC in meat.

3.
FEMS Microbiol Lett ; 369(1)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35325116

RESUMO

Bacteriocins from Gram-positive bacteria have been proposed as natural food preservative and there is a need for large-scale production for commercial purposes. The aim of the present work is to evaluate whey, a cheese industrial by-product, for the production and microencapsulation of enterocin CRL35. Whey proved to be a promising basal medium for bacterial growth although the bacteriocin production was quite low. However, it could be much favored with the addition of yeast extract at concentrations as low as 0.5%. Besides improving bacteriocin production, this peptide was successfully microencapsulated by spray drying using whey protein concentrate and a chitosan derivative as wall materials. Microcapsules averaging 10 ± 5 µm diameter were obtained, with good structural integrity and high antimicrobial activity with a stability of at least 12 weeks at 4°C. In summary, sustainable bacteriocin production and microencapsulation was achieved recycling whey or its derivatives. In addition, the formulation owns high antimicrobial activity with a long shelf life. The development of a food preservative may represent a green solution for handling whey.


Assuntos
Bacteriocinas , Conservantes de Alimentos , Antibacterianos/farmacologia , Bacteriocinas/metabolismo , Laticínios , Conservantes de Alimentos/farmacologia
4.
Microorganisms ; 11(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36677354

RESUMO

Currently, probiotic bacteria with not transferable antibiotic resistance represent a sustainable strategy for the treatment and prevention of enterotoxigenic Escherichia coli (ETEC) in farm animals. Lactiplantibacillus plantarum is among the most versatile species used in the food industry, either as starter cultures or probiotics. In the present work, the immunobiotic potential of L. plantarum CRL681 and CRL1506 was studied to evaluate their capability to improve the resistance to ETEC infection. In vitro studies using porcine intestinal epithelial (PIE) cells and in vivo experiments in mice were undertaken. Expression analysis indicated that both strains were able to trigger IL-6 and IL-8 expression in PIE cells in steady-state conditions. Furthermore, mice orally treated with these strains had significantly improved levels of IFN-γ and TNF-α in the intestine as well as enhanced activity of peritoneal macrophages. The ability of CRL681 and CRL1506 to beneficially modulate intestinal immunity was further evidenced in ETEC-challenge experiments. In vitro, the CRL1506 and CRL681 strains modulated the expression of inflammatory cytokines (IL-6) and chemokines (IL-8, CCL2, CXCL5 and CXCL9) in ETEC-stimulated PIE cells. In vivo experiments demonstrated the ability of both strains to beneficially regulate the immune response against this pathogen. Moreover, the oral treatment of mice with lactic acid bacteria (LAB) strains significantly reduced ETEC counts in jejunum and ileum and prevented the spread of the pathogen to the spleen and liver. Additionally, LAB treated-mice had improved levels of intestinal IL-10 both at steady state and after the challenge with ETEC. The protective effect against ETEC infection was not observed for the non-immunomodulatory TL2677 strain. Furthermore, the study showed that L. plantarum CRL1506 was more efficient than the CRL681 strain to modulate mucosal immunity highlighting the strain specific character of this probiotic activity. Our results suggest that the improved intestinal epithelial defenses and innate immunity induced by L. plantarum CRL1506 and CRL681 would increase the clearance of ETEC and at the same time, protect the host against detrimental inflammation. These constitute valuable features for future probiotic products able to improve the resistance to ETEC infection.

5.
PLoS One ; 15(4): e0230857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240216

RESUMO

The nucleotide sequences of plasmids pRC12 (12,342 bp; GC 43.99%) and pRC18 (18,664 bp; GC 34.33%), harbored by the bacteriocin-producer Lactobacillus curvatus CRL 705, were determined and analyzed. Plasmids pRC12 and pRC18 share a region with high DNA identity (> 83% identity between RepA, a Type II toxin-antitoxin system and a tyrosine integrase genes) and are stably maintained in their natural host L. curvatus CRL 705. Both plasmids are low copy number and belong to the theta-type replicating group. While pRC12 is a pUCL287-like plasmid that possesses iterons and the repA and repB genes for replication, pRC18 harbors a 168 amino acid replication protein affiliated to RepB, which was named RepB'. Plasmid pRC18 also possesses a pUCL287-like repA gene but it was disrupted by an 11 kb insertion element that contains RepB', several transposases/IS elements, and the lactocin Lac705 operon. An Escherichia coli / Lactobacillus shuttle vector, named plasmid p3B1, carrying the pRC18 replicon (i.e. repB' and replication origin), a chloramphenicol resistance gene and a pBluescript backbone, was constructed and used to define the host range of RepB'. Chloramphenicol-resistant transformants were obtained after electroporation of Lactobacillus plantarum CRL 691, Lactobacillus sakei 23K and a plasmid-cured derivative of L. curvatus CRL 705, but not of L. curvatus DSM 20019 or Lactococcus lactis NZ9000. Depending on the host, transformation efficiency ranged from 102 to 107 per µg of DNA; in the new hosts, the plasmid was relatively stable as 29-53% of recombinants kept it after cell growth for 100 generations in the absence of selective pressure. Plasmid p3B1 could therefore be used for cloning and functional studies in several Lactobacillus species.


Assuntos
Lactobacillus/genética , Plasmídeos/genética , Sequência de Aminoácidos/genética , Proteínas de Bactérias/genética , Sequência de Bases/genética , Replicação do DNA/genética , DNA Bacteriano/genética , Vetores Genéticos/genética , Origem de Replicação/genética , Replicon/genética , Análise de Sequência de DNA/métodos , Transposases/genética
6.
Food Res Int ; 125: 108622, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31554055

RESUMO

The enterohemorrhagic Escherichia (E.) coli (EHEC) is a pathogen of great concern for public health and the meat industry all over the world. The high economic losses in meat industry and the high costs of the illness highlight the necessity of additional efforts to control this pathogen. Previous studies have demonstrated the inhibitory activity of Enterococcus mundtii CRL35 towards EHEC, showing a specific proteomic response during the co-culture. In the present work, additional studies of the EHEC-Ent. mundtii interaction were carried out: i) differential protein expression of E. coli O157:H7 NCTC12900 growing in co-culture with Ent. mundtii in a meat environment, ii) the reciprocal influence between these two microorganisms in the adhesion to extracellular matrix (ECM) proteins and iii) the possible induction of the phage W933, coding for Shiga toxin (Stx1), by Ent. mundtii CRL35. Proteomic analysis showed a significant repression of a number of E. coli NCTC12900 proteins in co-culture respect to its single culture, these mostly related to the metabolism and transport of amino acids and nucleotides. On the other hand, statistically significant overexpression of EHEC proteins involved in stress, energy production, amino acid metabolism and transcription was observed at 30 h respect to 6 h when EHEC grew in co-culture. Data are available via ProteomeXchange with identifier PXD014588. Besides, EHEC showed a decreased adhesion capacity to ECM proteins in the presence of the bioprotective strain. Finally, Ent. mundtii CRL35 did not induce the lytic cycle of W933 bacteriophage, thus indicating its potential safe use for eliminating this pathogen. Overall, this study expands the knowledge of EHEC- Ent. mundtii CRL35 interaction in a meat environment, which will certainly contribute to find out effective biological strategies to eliminate this pathogen.


Assuntos
Proteínas de Bactérias/análise , Escherichia coli O157/fisiologia , Lactobacillales/fisiologia , Carne/microbiologia , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Bacteriófagos/fisiologia , Técnicas de Cocultura , Escherichia coli O157/química , Escherichia coli O157/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteômica
8.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975815

RESUMO

Lactobacillus plantarum CRL681 was isolated from Argentinean artisanal fermented sausages. Here, the draft genome sequence of the CRL681 strain is described. The reads were assembled into contigs with a total estimated size of 3,370,224 bp. A total of 3,300 open reading frames (ORFs) were predicted, including 3,126 protein-coding sequences. The draft genome sequence of L. plantarum CRL681 will be useful for understanding the organism's metabolic activities and for biotechnological applications.

10.
Food Res Int ; 112: 250-262, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131136

RESUMO

Bile acids (BA), the major components of bile, are biological detergents that facilitate the emulsification and solubilization of dietary lipids and also display potent antimicrobial activity, the bacterial membranes being their main targets. Considering the complicated nature of the stress produced by bile and BA, the microorganism tolerance requires different defence mechanisms including the presence of efflux pumps, bile salt hydrolase (BSH) enzyme, the intrinsic capacity of cells to maintain intracellular homeostasis and modifications in the architecture and composition of the cell membrane. Besides, the expression of proteins involved in carbohydrate and fatty acid metabolism, amino acid and nitrogenous base biosynthesis, and general stress response are commonly affected by the presence of bile. Among the microbial transformations, deconjugation of BA by BSH is the most important. Several studies indicate that BSH activity affects both the host physiology and the microbiota. In fact, it was strongly suggested that BSH could play an important role in the colonization and survival of bacteria in the gut. Also, recent work has shown that BSH and free BA participate in a variety of metabolic processes that include regulation of dietary lipid absorption, cholesterol metabolism, and energy and inflammation homeostasis. In this review we summarize recent advances in the understanding of the mechanisms involved in the tolerance of bacteria to bile, with special emphasis on the contributions of studies applying an omic approach. Besides, the physiological and ecological role of BSH enzyme and its relevance to human health as well as the function of bile acid as metabolic regulator are also discussed.


Assuntos
Amidoidrolases/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Metabolismo dos Lipídeos , Viabilidade Microbiana , Animais , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Humanos
11.
Front Microbiol ; 9: 1083, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922248

RESUMO

Human infection by Enterohemorrhagic Escherichia (E.) coli (EHEC) occurs through the ingestion of contaminated foods such as milk, vegetable products, water-based drinks, and particularly minced meats. Indeed EHEC is a pathogen that threatens public health and meat industry. The potential of different Lactic Acid Bacteria (LAB) strains to control EHEC in a meat-based medium was evaluated by using a simple and rapid method and by analyzing the growth kinetics of co-cultures (LAB-EHEC) in a meat-based medium. The activity of LAB toward EHEC in co-cultures showed variable inhibitory effect. Although, LAB were able to control EHEC, neither the produced acid nor bacteriocins were responsible of the inhibition. The bacteriocinogenic Enteroccus (Ent.) mundtii CRL35 presented one of the highest inhibition activities. A proteomic approach was used to evaluate bacterial interaction and antagonistic mechanisms between Ent. mundtii and EHEC. Physiological observations, such as growth kinetics, acidification ability and EHEC inhibitory potential were supported by the proteomic results, demonstrating significant differences in protein expression in LAB: (i) due to the presence of the pathogen and (ii) according to the growth phase analyzed. Most of the identified proteins belonged to carbohydrate/amino acid metabolism, energy production, transcription/translation, and cell division. These results contribute to the knowledge of competition strategies used by Ent. mundtii during its co-culture with EHEC setting new perspectives for the use of LAB to control this pathogen in meat.

12.
Food Res Int ; 109: 368-379, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29803462

RESUMO

Fermented sausage technology is currently compromised in decreasing the addition of NaCl. Use of starter cultures with peptidogenic potential could be a valuable strategy that can mask or hide off flavors produced by the use of NaCl substituents. In the present work, the peptidogenic potential of four lactic acid bacteria species was evaluated in a low-sodium beaker sausage (BS) model. Using a peptidomic approach, a total of 86 low molecular weight (LMW) peptides were accurately identified, mostly derived from myofibrillar proteins, especially actin, which generated 53 peptides. The BS inoculated with L. curvatus CRL705 generated 56 LMW peptides, followed by Enterococcus (E.) mundtii CRL35 with 43 peptides. In addition, BS inoculated with Lactobacillus (L.) plantarum and with L. sakei produced higher amino acid amounts over time as compared to the rest of BS models, highlighting the importance of both, time and sample effect on the overall free amino acid generation. The presence of each LAB strain in BS models generated a unique profile of small peptides and amino acids that could serve as a distinctive biochemical trait to differentiate specific fermented products. According to these results, E. mundtii and L. sakei, which are compatible between them, are proposed as the most efficiently adapted to low-sodium conditions. The use of selected strains during the processing of low-sodium fermented sausages could have a positive effect on the production of small peptides and free amino acids.


Assuntos
Enterococcus/metabolismo , Fermentação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/métodos , Lactobacillus/metabolismo , Produtos da Carne/microbiologia , Proteínas de Carne/metabolismo , Proteômica/métodos , Cloreto de Sódio/química , Aminoácidos/metabolismo , Cromatografia de Fase Reversa , Lactobacillus plantarum/metabolismo , Latilactobacillus sakei/metabolismo , Peso Molecular , Fragmentos de Peptídeos/metabolismo , Proteólise , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fatores de Tempo
13.
Food Res Int ; 107: 289-296, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29580488

RESUMO

The aim of this work was to evaluate the effect of meat curing agents on the bioprotective activity of the bacteriocinogenic strain, Enterococcus (E.) mundtii CRL35 against Listeria (L.) monocytogenes during meat fermentation. The ability of E. mundtii CRL35 to grow, acidify and produce bacteriocin in situ was assayed in a meat model system in the presence of curing additives (CA). E. mundtii CRL35 showed optimal growth and acidification rates in the presence of CA. More importantly, the highest bacteriocin titer was achieved in the presence of these food agents. In addition, the CA produced a statistical significant enhancement of the enterocin CRL35 activity. This positive effect was demonstrated in vitro in a meat based culture medium, by time-kill kinetics and finally by using a beaker sausage model with a challenge experiment with the pathogenic L. monocytogenes FBUNT strain. E. mundtii CRL35 was found to be a promising strain of use as a safety adjunct culture in meat industry and a novel functional supplement for sausage fermentation, ensuring hygiene and quality of the final product.


Assuntos
Bacteriocinas/metabolismo , Enterococcus/metabolismo , Microbiologia de Alimentos/métodos , Listeria monocytogenes/efeitos dos fármacos , Produtos da Carne/microbiologia , Carne/microbiologia , Bacteriocinas/farmacologia , Fermentação , Conservação de Alimentos/métodos , Listeria monocytogenes/crescimento & desenvolvimento
14.
Sci Rep ; 7(1): 8579, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28819300

RESUMO

The proteolytic system of Lactobacillus plays an essential role in bacterial growth, contributes to the flavor development of fermented products, and can release bioactive health-beneficial peptides during milk fermentation. In this work, a genomic analysis of all genes involved in the proteolytic system of L. delbrueckii subsp. lactis CRL 581 was performed. Genes encoding the cell envelope-associated proteinase, two peptide transport systems, and sixteen peptidases were identified. The influence of the peptide supply on the transcription of 23 genes involved in the proteolytic system of L. delbrueckii subsp. lactis was examined after cell growth in a chemically defined medium (CDM) and CDM supplemented with Casitone. prtL, oppA 1, optS, optA genes as well as oppDFBC and optBCDF operons were the most highly expressed genes in CDM; their expression being repressed 6- to 115-fold by the addition of peptides. The transcriptional analysis was confirmed by proteomics; the up-regulation of the PrtL, PepG, OppD and OptF proteins in the absence of peptides was observed while the DNA-binding protein YebC was up-regulated by peptides. Binding of YebC to the promoter region of prtL, oppA 1, and optS, demonstrated by electrophoretic mobility shift assays, showed that YebC acts as a transcriptional repressor of key proteolytic genes.


Assuntos
Proteínas de Bactérias/genética , Meios de Cultura/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Lactobacillus delbrueckii/genética , Fatores de Transcrição/genética , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Caseínas/farmacologia , Meios de Cultura/química , Eletroforese em Gel Bidimensional , Fermentação , Genômica/métodos , Lactobacillus delbrueckii/metabolismo , Óperon , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Filogenia , Proteólise , Proteômica/métodos , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
15.
Int J Food Microbiol ; 258: 18-27, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28738195

RESUMO

Some lactic acid bacteria have the ability to form biofilms on food-industry surfaces and this property could be used to control food pathogens colonization. Lactobacillus sakei CR1862 was selected considering its bacteriocinogenic nature and ability to adhere to abiotic surfaces at low temperatures. In this study, the proteome of L. sakei CRL1862 grown either under biofilm on stainless steel surface and planktonic modes of growth at 10°C, was investigated. Using two-dimensional gel electrophoresis, 29 out of 43 statistically significant spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Ten proteins resulted up-regulated whereas 16 were down-regulated during biofilm formation. Differentially expressed proteins were found to belong to carbohydrate, nucleotide, aminoacid and lipid metabolisms as well as translation, peptide hydrolysis, cell envelope/cell wall biosynthesis, adaption to atypical conditions and protein secretion. Some proteins related to carbohydrate and nucleotide metabolisms, translation and peptide degradation were overexpressed whereas those associated to stress conditions were synthesized in lower amounts. It seems that conditions for biofilm development would not imply a stressful environment for L. sakei CRL1862 cells, directing its growth strategy towards glycolytic flux regulation and reinforcing protein synthesis. In addition, L. sakei CRL1862 showed to harbor nine out of ten assayed genes involved in biofilm formation and protein anchoring. By applying qRT-PCR analysis, four of these genes showed to be up regulated, srtA2 being the most remarkable. The results of this study contribute to the knowledge of the physiology of L. sakei CRL1862 growing in biofilm on a characteristic food contact surface. The use of this strain as green biocide preventing L. monocytogenes post-processing contamination on industrial surfaces may be considered.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Latilactobacillus sakei/crescimento & desenvolvimento , Aço Inoxidável , Desinfetantes/farmacologia , Eletroforese em Gel Bidimensional , Indústria de Processamento de Alimentos , Perfilação da Expressão Gênica , Latilactobacillus sakei/genética , Latilactobacillus sakei/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Proteoma/genética , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Microorganisms ; 5(2)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513575

RESUMO

Quality and safety are important challenges in traditional fermented sausage technology. Consequently, the development of a tailored starter culture based on indigenous microbiota constitutes an interesting alternative. In the present study, spontaneously fermented goat meat sausages were created and analyzed using a physicochemical and microbiological approach. Thereafter 170 lactic acid bacteria (LAB) strains were isolated and preliminary characterized by phenotypic assays. The hygienic and technological properties, and growth and fermentative potential of isolates using a goat-meat-based culture medium were evaluated. All strains proved to have bioprotective features due to their acidogenic metabolism. Almost all grew optimally in meat environments. LAB isolates presented proteolytic activity against meat proteins and enriched amino acid contents of the goat-meat-based model. The most efficient strains were four different Lactobacillus sakei isolates, as identified by genotyping and RAPD analysis. L. sakei strains are proposed as optimal candidates to improve the production of fermented goat meat sausages, creating a new added-value fermented product.

17.
PLoS One ; 12(1): e0169441, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28060932

RESUMO

Several plants, fungi, algae, and certain bacteria produce mannitol, a polyol derived from fructose. Mannitol has multiple industrial applications in the food, pharmaceutical, and medical industries, being mainly used as a non-metabolizable sweetener in foods. Many heterofermentative lactic acid bacteria synthesize mannitol when an alternative electron acceptor such as fructose is present in the medium. In previous work, we reported the ability of Lactobacillus reuteri CRL 1101 to efficiently produce mannitol from sugarcane molasses as carbon source at constant pH of 5.0; the activity of the enzyme mannitol 2-dehydrogenase (MDH) responsible for the fructose conversion into mannitol being highest during the log cell growth phase. Here, a detailed assessment of the MDH activity and relative expression of the mdh gene during the growth of L. reuteri CRL 1101 in the presence of fructose is presented. It was observed that MDH was markedly induced by the presence of fructose. A direct correlation between the maximum MDH enzyme activity and a high level of mdh transcript expression during the log-phase of cells grown in a fructose-containing chemically defined medium was detected. Furthermore, two proteomic approaches (2DE and shotgun proteomics) applied in this study confirmed the inducible expression of MDH in L. reuteri. A global study of the effect of fructose on activity, mdh gene, and protein expressions of MDH in L. reuteri is thus for the first time presented. This work represents a deep insight into the polyol formation by a Lactobacillus strain with biotechnological potential in the nutraceutics and pharmaceutical areas.


Assuntos
Genômica , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/metabolismo , Manitol Desidrogenases/metabolismo , Manitol/metabolismo , Proteômica , Metabolismo dos Carboidratos , Carboidratos/química , Ativação Enzimática , Frutose/metabolismo , Genômica/métodos , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
DNA Res ; 24(1): 11-24, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773878

RESUMO

The study of enterococcal genomes has grown considerably in recent years. While special attention is paid to comparative genomic analysis among clinical relevant isolates, in this study we performed an exhaustive comparative analysis of enterococcal genomes of food origin and/or with potential to be used as probiotics. Beyond common genetic features, we especially aimed to identify those that are specific to enterococcal strains isolated from a certain food-related source as well as features present in a species-specific manner. Thus, the genome sequences of 25 Enterococcus strains, from 7 different species, were examined and compared. Their phylogenetic relationship was reconstructed based on orthologous proteins and whole genomes. Likewise, markers associated with a successful colonization (bacteriocin genes and genomic islands) and genome plasticity (phages and clustered regularly interspaced short palindromic repeats) were investigated for lifestyle specific genetic features. At the same time, a search for antibiotic resistance genes was carried out, since they are of big concern in the food industry. Finally, it was possible to locate 1617 FIGfam families as a core proteome universally present among the genera and to determine that most of the accessory genes code for hypothetical proteins, providing reasonable hints to support their functional characterization.


Assuntos
Enterococcus/genética , Microbiologia de Alimentos , Genoma Bacteriano , Probióticos , Bacteriocinas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resistência Microbiana a Medicamentos/genética , Enterococcus/classificação , Transferência Genética Horizontal , Marcadores Genéticos , Filogenia
19.
Appl Microbiol Biotechnol ; 100(10): 4573-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26910041

RESUMO

The ability of microorganisms to synthesize S-layer, the outermost structure of the microbial cell envelope composed of non-covalently bound proteins, has been ascribed to help microorganisms to exert their probiotic properties in the host. In this work, formation of S-layer by the potentially probiotic strain Lactobacillus acidophilus IBB 801 under different stress culture conditions (high incubation temperatures, presence of bile salts or NaCl, and acidic pH) was assayed. A marked S-layer synthesis by L. acidophilus IBB 801 was detected when the strain was grown at 42 °C and in the presence of 0.05 % bile salts or 2.0 % NaCl. The presence of S-layer proteins was further confirmed by transmission electron microscopy and protein identification by MS/MS. The differential expression of the proteome of this strain at 42 °C, when a marked formation of S-layer was detected, revealed the overexpression of six proteins mainly related to general stress and protein biosynthesis and translation, while four proteins detected in lower amounts were involved in DNA repair and energy metabolism. As L. acidophilus IBB 801 produces both a bacteriocin and S-layer proteins, the strain could be of interest to be used in the formulation of functional food products with specific properties.


Assuntos
Proteínas de Bactérias/biossíntese , Lactobacillus acidophilus/metabolismo , Glicoproteínas de Membrana/biossíntese , Estresse Fisiológico , Bacteriocinas/biossíntese , Ácidos e Sais Biliares/química , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Proteômica , Cloreto de Sódio/química , Espectrometria de Massas em Tandem
20.
Proteomics ; 15(21): 3676-87, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26306575

RESUMO

Argentina is one of the most relevant countries in Latin America, playing a major role in regional economics, culture and science. Over the last 80 years, Argentinean history has been characterized by several upward and downward phases that had major consequences on the development of science in the country and most recently on proteomics. In this article, we characterize the evolution of Proteomics sciences in Argentina over the last decade and a half. We describe the proteomics publication output of the country in the framework of the regional and international contexts, demonstrating that Argentina is solidly anchored in a regional context, showing results similar to other emergent and Latin American countries, albeit still far from the European, American or Australian realities. We also provide a case-study on the importance of Proteomics to a specific sector in the area of food science: the use of bacteria of technological interest, highlighting major achievements obtained by Argentinean proteomics scientists. Finally, we provide a general picture of the endeavors being undertaken by Argentinean Proteomics scientists and their international collaborators to promote the Proteomics-based research with the new generation of scientists and PhD students in both Argentina and other countries in the Southern cone.


Assuntos
Carne/análise , Proteoma/análise , Proteômica , Animais , Argentina , Humanos , Cooperação Internacional , Proteômica/educação , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...