Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(2): 1020-1034, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38176690

RESUMO

Zerovalent scandium, zirconium, hafnium, and manganese nanoparticles are prepared by reduction of ScCl3, ZrCl4, HfCl4, and MnCl2 with lithium or sodium naphthalenide in a one-pot, liquid-phase synthesis. Small-sized monocrystalline nanoparticles are obtained with diameters of 2.4 ± 0.2 nm (Sc), 4.0 ± 0.9 nm (Zr), 8.0 ± 3.9 nm (Hf) and 2.4 ± 0.3 nm (Mn). Thereof, Zr(0) and Hf(0) nanoparticles with such size are shown for the first time. To probe the reactivity and reactions of the as-prepared Sc(0), Zr(0), Hf(0), and Mn(0) nanoparticles, they are exemplarily reacted in the liquid phase (e.g., THF, toluene, ionic liquids) with different sterically demanding, monodentate to multidentate ligands, mainly comprising O-H and N-H acidic alcohols and amines. These include isopropanol (HOiPr), 1,1'-bi-2-naphthol (H2binol), N,N'-bis(salicylidene)ethylenediamine (H2salen), 2-mercaptopyridine (2-Hmpy), 2,6-diisopropylaniline (H2dipa), carbazole (Hcz), triphenylphosphane (PPh3), N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bipy), N,N'-diphenylformamidine (Hdpfa), N,N'-(2,6-diisopropylphenyl)-2,4-pentanediimine ((dipp)2nacnacH), 2,2'-dipydridylamine (Hdpa), and 2,6-bis(2-benzimidazolyl)pyridine (H2bbp). As a result, 22 new compounds are obtained, which frequently exhibit a metal center coordinated only by the sterically demanding ligand. Options and restrictions for the liquid-phase syntheses of novel coordination compounds using the oxidation of base-metal nanoparticles near room temperature are evaluated.

2.
Angew Chem Int Ed Engl ; 60(32): 17373-17377, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33929069

RESUMO

The first liquid-phase synthesis of high-quality, small-sized rare-earth metal nanoparticles (1-3 nm)-ranging from lanthanum as one of the largest (187 pm) to scandium as the smallest (161 pm) rare-earth metal-is shown. Size, oxidation state, and reactivity of the nanoparticles are examined (e.g., electron microscopy, electron spectroscopy, X-ray absorption spectroscopy, selected reactions). Whereas the nanoparticles are highly reactive (e.g. in contact to air and water), they are chemically stable as THF suspensions and powders under inert conditions. The reactivity can be controlled to obtain inorganic and metal-organic compounds at room temperature.

3.
Chem Commun (Camb) ; 57(30): 3648-3651, 2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870350

RESUMO

Zerovalent niobium, Nb(0), and tantalum, Ta(0), nanoparticles are prepared via a one-pot, liquid-phase synthesis. For this, NbCl5/TaCl5 are dissolved in pyridine and reduced by lithium pyridinyl. Deep black suspensions of very small, highly uniform nanoparticles are obtained with average diameters of 2.1 ± 0.4 nm (Nb(0)) and 1.9 ± 0.4 nm (Ta(0)). Whereas suspensions are chemically and colloidally stable, powder samples are very reactive. TEM/HRTEM, XRD, FT-IR, and XANES are used for characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA