Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Eng Technol ; 14(6): 755-773, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37749359

RESUMO

PURPOSE: Activation of the calf (gastrocnemius and soleus) and tibialis anterior muscles play an important role in blood pressure regulation (via muscle-pump mechanism) and postural control. Parkinson's disease is associated with calf (and tibialis anterior muscles weakness and stiffness, which contribute to postural instability and associated falls. In this work, we studied the role of the medial and lateral gastrocnemius, tibialis anterior, and soleus muscle contractions in maintaining blood pressure and postural stability in Parkinson's patients and healthy controls during standing. In addition, we investigated whether the activation of the calf and tibialis anterior muscles is baroreflex dependent or postural-mediated. METHODS: We recorded electrocardiogram, blood pressure, center of pressure as a measure of postural sway, and muscle activity from the medial and lateral gastrocnemius, tibialis anterior, and soleus muscles from twenty-six Parkinson's patients and eighteen sex and age-matched healthy controls during standing and with eyes open. The interaction and bidirectional causalities between the cardiovascular, musculoskeletal, and postural variables were studied using wavelet transform coherence and convergent cross-mapping techniques, respectively. RESULTS: Parkinson's patients experienced a higher postural sway and demonstrated mechanical muscle-pump dysfunction of all individual leg muscles, all of which contribute to postural instability. Moreover, our results showed that coupling between the cardiovascular, musculoskeletal, and postural variables is affected by Parkinson's disease while the contribution of the calf and tibialis anterior muscles is greater for blood pressure regulation than postural sway. CONCLUSION: The outcomes of this study could assist in the development of appropriate physical exercise programs that target lower limb muscles to improve the muscle-pump function and reduce postural instability in Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Pressão Sanguínea , Eletromiografia , Postura/fisiologia , Músculo Esquelético , Equilíbrio Postural/fisiologia
2.
Physiol Meas ; 44(2)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36720165

RESUMO

The relationship between heart rate and blood pressure, as well as cardiorespiratory coupling, play a critical role in maintaining blood pressure and organ perfusion during conditions of blood loss. Traditional vital signs such as blood pressure, breathing rate, and oxygen saturation are poor markers of blood loss, making it difficult for medics to assess the severity of central hypovolemia. Monitoring hemorrhage is further complicated by the fact that some patients have a low tolerance to hemorrhage and would reach the point of cardiovascular collapse in less time than high tolerant individuals. Therefore, this study aimed to investigate the potential of the physiological interaction between heart rate and blood pressure, and cardiorespiratory coupling to track the progression of simulated hemorrhage, as well as distinguish individuals with low tolerance (LT) from the ones with high tolerance (HT) to hypovolemia. Nineteen subjects (age: 28 ± 6 years; height: 170 ± 7 cm; weight: 68 ± 10 kg) underwent a progressive lower body negative pressure (LBNP) protocol in which the participant was supine inside the chamber for 12 min (baseline) before 12 min of chamber decompression at -20, -30, -40, -50 and -60 mmHg followed by a 12 min recovery period. Twelve subjects reached presyncope before or during -60 mmHg LBNP stage and were considered low tolerant (LT, 12 participants), while the ones who completed -60 mmHg were considered high tolerant (HT, 7 participants). Continuous blood pressure (BP), respiration (RSP), and electrocardiogram (ECG) signals were acquired simultaneously during baseline and each LBNP stage. RR interval was calculated using ECG, while systolic blood pressure (SBP), and pulse pressure were derived from BP waveform. Wavelet transform coherence and convergent cross-mapping techniques were employed to study the physiological interdependence and the causal relationship between heart rate, blood pressure, and respiration. The interaction between blood pressure and heart rate in terms of gain, active gain, and fraction time active(SBP↔RR,PP↔RR)to maintain homeostasis was higher in the LT group during baseline, and LBNP simulated mild, moderate, and severe hemorrhage. The significant time of interaction between SBP and RSP, and the causal effect of blood pressure on respiration were higher in the HT group during baseline compared to the LT group. HT participants also had a higher causal effect of respiration on blood pressure(RSP→SBP,RSP→PP)during -30 and -40 mmHg compared to LT. Moreover, the HT group displayed a higher causal drive of respiratory-related changes in heart rate(RSP→RR)and heart rate mediated changes in respirationRR→RSPduring severe simulated hemorrhage (-40 mmHg) compared to the LT group. The calculated metrics to distinguish between individual LT from HT subjects achieved a sensitivity of 58%-83%, an accuracy of 63%-84%, and an area under the ROC curve of 74%-86%, while the overlap of LT individual responses with HT was 0%-33%. These results indicate the potential of cardiorespiratory coupling, and heart rate and blood pressure interaction toward tracking the progression of hemorrhage and distinguishing individuals with low tolerance to hypovolemia from those with high tolerance. Measurements of such interactions could improve clinical outcomes for patients with low tolerance to hypovolemia and therefore reduce morbidity and mortality through early implementation of life-saving interventions.


Assuntos
Hemodinâmica , Hipovolemia , Humanos , Adulto Jovem , Adulto , Hemodinâmica/fisiologia , Pressão Negativa da Região Corporal Inferior , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Hemorragia/diagnóstico
3.
Front Physiol ; 13: 943630, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213230

RESUMO

As part of the first Canadian aging and inactivity study (CAIS) we assessed the efficacy of space-based exercise countermeasures for maintenance of cardiac and muscle-pump baroreflex in older persons during bedrest. An initiative of the Canadian Space Agency, Canadian Institutes of Health Research and the Canadian Frailty Network, CAIS involved 14 days of 6-degree head-down tilt bedrest (HDBR) with (Exercise) or without (Control) combined upper and lower body strength, aerobic, and high-intensity interval training exercise countermeasures. Twenty healthy men and women aged 55 to 65, randomly divided into control and exercise groups (male control (MC, n = 5), male exercise (ME, n = 5), female control (FC, n = 6), female exercise (FE, n = 4)) (age: 58.7 ± 0.5 years, height: 1.67 ± 0.02 m, body mass: 70.2 ± 3.2 kg; mean ± SEM), completed the study. Cardiac and muscle-pump baroreflex activity were assessed with supine-to-stand tests. Wavelet transform coherence was used to characterise cardiac and muscle-pump baroreflex fraction time active (FTA) and gain values, and convergent cross-mapping was used to investigate causal directionality between blood pressure (BP) and heart rate, as well as BP and lower leg muscle electromyography (EMG). Seven of the twenty participants were unable to stand for 6 minutes after HDBR, with six of those being female. Our findings showed that 2 weeks of bedrest impaired skeletal muscle's ability to return blood to the venous circulation differently across various sexes and intervention groups. Comparing values after bed rest with before bed rest values, there was a significant increase in heart rates (∆ of +25%; +17% in MC to +33% in FC; p < 0.0001), beat-to-beat EMG decreased (∆ of -43%; -25% in ME to -58% in MC; p < 0.02), while BP change was dependent on sex and intervention groups. Unlike their male counterparts, in terms of muscle-pump baroreflex, female participants had considerably decreased FTA after HDBR (p < 0.01). All groups except female control demonstrated parallel decreases in cardiac active gain and causality, while the FC demonstrated an increase in cardiac causality despite a similar decline in cardiac active gain. Results showed that the proposed exercises may alleviate muscle-pump baroreflex declines but could not influence the cardiac baroreflex decline from 14 days of inactivity in older adults.

4.
Front Physiol ; 13: 863877, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755448

RESUMO

Cardiac baroreflex and leg muscles activation are two important mechanisms for blood pressure regulation, failure of which could result in syncope and falls. Parkinson's disease is known to be associated with cardiac baroreflex impairment and skeletal muscle dysfunction contributing to falls. However, the mechanical effect of leg muscles contractions on blood pressure (muscle-pump) and the baroreflex-like responses of leg muscles to blood pressure changes is yet to be comprehensively investigated. In this study, we examined the involvement of the cardiac baroreflex and this hypothesized reflex muscle-pump function (cardio-postural coupling) to maintain blood pressure in Parkinson's patients and healthy controls during an orthostatic challenge induced via a head-up tilt test. We also studied the mechanical effect of the heart and leg muscles contractions on blood pressure. We recorded electrocardiogram, blood pressure and electromyogram from 21 patients with Parkinson's disease and 18 age-matched healthy controls during supine, head-up tilt at 70°, and standing positions with eyes open. The interaction and bidirectional causalities between the cardiovascular and musculoskeletal signals were studied using wavelet transform coherence and convergent cross mapping techniques, respectively. Parkinson's patients displayed an impaired cardiac baroreflex and a reduced mechanical effect of the heart on blood pressure during supine, tilt and standing positions. However, the effectiveness of the cardiac baroreflex decreased in both Parkinson's patients and healthy controls during standing as compared to supine. In addition, Parkinson's patients demonstrated cardio-postural coupling impairment along with a mechanical muscle pump dysfunction which both could lead to dizziness and falls. Moreover, the cardiac baroreflex had a limited effect on blood pressure during standing while lower limb muscles continued to contract and maintain blood pressure via the muscle-pump mechanism. The study findings highlighted altered bidirectional coupling between heart rate and blood pressure, as well as between muscle activity and blood pressure in Parkinson's disease. The outcomes of this study could assist in the development of appropriate physical exercise programs to reduce falls in Parkinson's disease by monitoring the cardiac baroreflex and cardio-postural coupling effect on maintaining blood pressure.

5.
J Tissue Viability ; 31(3): 491-500, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473797

RESUMO

Wheelchair users have a higher risk of developing pressure ulcers due to prolonged seated pressure. Pressure ulcers can be painful, may require surgical intervention, and even become life-threatening if infection occurs. To prevent pressure ulcers from forming the patient must either offload themselves or rely on a caregiver to move them allowing pressure redistribution over the seated area. In this work, we designed a dynamic air cushion to relieve pressure on loaded areas using sequences of inflation and deflation of the air cushion cells. The purpose of these sequences is to offload pressure from high-risk areas. To evaluate the effect of the alternating sequences on seated pressure and blood perfusion, we recorded interface pressure, skin blood flow, superficial tissue oxygen saturation, blood concentrations of oxygenated hemoglobin, and deoxygenated hemoglobin from twenty-one healthy volunteers who were asked to sit on the air cushion for static mode recording (3 min) and during the inflation/deflation sequences (up to 22 min). The alternating sequences consisted of ten combined inflation and deflation steps. Results showed that, after applying the alternating sequences, interface pressure reduced significantly (p=0.02) compared to the static mode. Moreover, the coefficient of variation of the seated pressure was higher (p<0.001) during the alternation sequence compared to the static mode. However, interface pressure under the right and left ischial tuberosities increased (p<0.001) during the alternation sequence compared to the static mode. In addition, during the alternating sequences, males had larger dispersion index values of both right and left ischial tuberosities pressure compared to females. Furthermore, the maximum value of oxygen saturation (p=0.04) and skin blood flow (p=0.001) increased during the pressure alternation sequences compared to the static mode. The study findings highlighted the positive effects of the designed dynamic air-cushion to relieve pressure on compressed areas and enhance blood perfusion similar to manual offloading approaches. The outcomes of this study are encouraging to evaluate the performance of the designed air cushion in studies involving wheelchair users.


Assuntos
Úlcera por Pressão , Cadeiras de Rodas , Nádegas , Desenho de Equipamento , Feminino , Hemoglobinas , Humanos , Ísquio/fisiologia , Masculino , Úlcera por Pressão/prevenção & controle
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2433-2436, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891772

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder resulting in abnormal body movements. Postural instability is one of the primary motor symptoms of PD and contributes to falls. Measurement of postural sway through center of pressure (COP) data might be an objective indicator of Parkinson's disease. The goal of this work is to use machine learning to evaluate if different features of postural sway can differentiate PD patients from healthy controls. Time domain, frequency domain, time-frequency, and structural features were extracted from COP data collected from 19 PD patients and 13 healthy controls (HC). The calculated parameters were input to various machine-learning models to classify PD and HC. Random Forest outperformed the rest of the classifiers in terms of accuracy, false negative rate, F1-score, and precision. Time domain features had the best performance in differentiating PD from HC compared to other feature groups.


Assuntos
Doença de Parkinson , Humanos , Aprendizado de Máquina , Doença de Parkinson/diagnóstico , Equilíbrio Postural
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4019-4022, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892112

RESUMO

Currently, there is no single technology capable of assessing all the multitude of factors associated with peripheral complications of diabetic neuropathy. In this work, a multimodal wound detection system is proposed to help facilitate in-home examinations, utilizing a combination of thermal, multi-spectral 3D imaging modalities. The proposed system is capable of the 3D surface rendering of the foot and would overlay thermal, blood oxygenation, besides other skin health information to aid with foot health monitoring. Examples of biomarkers include pre-ulcer formation, blood circulation, temperature change, oxygenation, swelling, blisters/ulcer formation and healing, and toe health.


Assuntos
Diabetes Mellitus , Pé Diabético , Neuropatias Diabéticas , Pé Diabético/diagnóstico , Neuropatias Diabéticas/diagnóstico , , Humanos , Pele , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...