Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Front Netw Physiol ; 4: 1385421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835949

RESUMO

The increasing availability of time series data depicting the evolution of physical system properties has prompted the development of methods focused on extracting insights into the system behavior over time, discerning whether it stems from deterministic or stochastic dynamical systems. Surrogate data testing plays a crucial role in this process by facilitating robust statistical assessments. This ensures that the observed results are not mere occurrences by chance, but genuinely reflect the inherent characteristics of the underlying system. The initial process involves formulating a null hypothesis, which is tested using surrogate data in cases where assumptions about the underlying distributions are absent. A discriminating statistic is then computed for both the original data and each surrogate data set. Significantly deviating values between the original data and the surrogate data ensemble lead to the rejection of the null hypothesis. In this work, we present various surrogate methods designed to assess specific statistical properties in random processes. Specifically, we introduce methods for evaluating the presence of autodependencies and nonlinear dynamics within individual processes, using Information Storage as a discriminating statistic. Additionally, methods are introduced for detecting coupling and nonlinearities in bivariate processes, employing the Mutual Information Rate for this purpose. The surrogate methods introduced are first tested through simulations involving univariate and bivariate processes exhibiting both linear and nonlinear dynamics. Then, they are applied to physiological time series of Heart Period (RR intervals) and respiratory flow (RESP) variability measured during spontaneous and paced breathing. Simulations demonstrated that the proposed methods effectively identify essential dynamical features of stochastic systems. The real data application showed that paced breathing, at low breathing rate, increases the predictability of the individual dynamics of RR and RESP and dampens nonlinearity in their coupled dynamics.

2.
Front Netw Physiol ; 4: 1346424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638612

RESUMO

The concept of self-predictability plays a key role for the analysis of the self-driven dynamics of physiological processes displaying richness of oscillatory rhythms. While time domain measures of self-predictability, as well as time-varying and local extensions, have already been proposed and largely applied in different contexts, they still lack a clear spectral description, which would be significantly useful for the interpretation of the frequency-specific content of the investigated processes. Herein, we propose a novel approach to characterize the linear self-predictability (LSP) of Gaussian processes in the frequency domain. The LSP spectral functions are related to the peaks of the power spectral density (PSD) of the investigated process, which is represented as the sum of different oscillatory components with specific frequency through the method of spectral decomposition. Remarkably, each of the LSP profiles is linked to a specific oscillation of the process, and it returns frequency-specific measures when integrated along spectral bands of physiological interest, as well as a time domain self-predictability measure with a clear meaning in the field of information theory, corresponding to the well-known information storage, when integrated along the whole frequency axis. The proposed measure is first illustrated in a theoretical simulation, showing that it clearly reflects the degree and frequency-specific location of predictability patterns of the analyzed process in both time and frequency domains. Then, it is applied to beat-to-beat time series of arterial compliance obtained in young healthy subjects. The results evidence that the spectral decomposition strategy applied to both the PSD and the spectral LSP of compliance identifies physiological responses to postural stress of low and high frequency oscillations of the process which cannot be traced in the time domain only, highlighting the importance of computing frequency-specific measures of self-predictability in any oscillatory physiologic process.

3.
Biosensors (Basel) ; 14(4)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38667198

RESUMO

Wearable health devices (WHDs) are rapidly gaining ground in the biomedical field due to their ability to monitor the individual physiological state in everyday life scenarios, while providing a comfortable wear experience. This study introduces a novel wearable biomedical device capable of synchronously acquiring electrocardiographic (ECG), photoplethysmographic (PPG), galvanic skin response (GSR) and motion signals. The device has been specifically designed to be worn on a finger, enabling the acquisition of all biosignals directly on the fingertips, offering the significant advantage of being very comfortable and easy to be employed by the users. The simultaneous acquisition of different biosignals allows the extraction of important physiological indices, such as heart rate (HR) and its variability (HRV), pulse arrival time (PAT), GSR level, blood oxygenation level (SpO2), and respiratory rate, as well as motion detection, enabling the assessment of physiological states, together with the detection of potential physical and mental stress conditions. Preliminary measurements have been conducted on healthy subjects using a measurement protocol consisting of resting states (i.e., SUPINE and SIT) alternated with physiological stress conditions (i.e., STAND and WALK). Statistical analyses have been carried out among the distributions of the physiological indices extracted in time, frequency, and information domains, evaluated under different physiological conditions. The results of our analyses demonstrate the capability of the device to detect changes between rest and stress conditions, thereby encouraging its use for assessing individuals' physiological state. Furthermore, the possibility of performing synchronous acquisitions of PPG and ECG signals has allowed us to compare HRV and pulse rate variability (PRV) indices, so as to corroborate the reliability of PRV analysis under stationary physical conditions. Finally, the study confirms the already known limitations of wearable devices during physical activities, suggesting the use of algorithms for motion artifact correction.


Assuntos
Eletrocardiografia , Dedos , Resposta Galvânica da Pele , Frequência Cardíaca , Fotopletismografia , Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica/instrumentação , Processamento de Sinais Assistido por Computador , Masculino , Adulto , Feminino
4.
Artigo em Inglês | MEDLINE | ID: mdl-38083094

RESUMO

We present an approach to assess redundant and synergistic interactions in network systems via the information-theoretic analysis of multivariate physiological processes. The approach sets up a strategy to decompose the information shared between the present states of a group of random processes and their own past states into unique contributions arising from the past of subgroups of processes and redundant and synergistic contributions arising from the dynamic interaction among the subgroups. The method is illustrated in a theoretical example of linearly interacting Gaussian processes, showing that redundancy and synergy are related mostly to unidirectional coupling and to bidirectional coupling with internal dynamics. It is then applied to the network of short-term heart period, arterial pressure and respiratory variability probed in healthy subjects, showing that redundancy and synergy prevail respectively in cardiorespiratory interactions and in cardiovascular interactions in the resting state, and that postural stress increases the predictive information and the redundancy of physiological interactions.


Assuntos
Sistema Cardiovascular , Coração , Humanos , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Coração/fisiologia , Pressão Arterial
5.
Artigo em Inglês | MEDLINE | ID: mdl-38083104

RESUMO

The trend toward personalized medicine necessitates drawing conclusions from descriptive indexes of physiopathological states estimated from individual recordings of biomedical signals, using statistical analyses that focus on subject-specific differences between experimental conditions. In this context, the present work introduces an approach to assess functional connectivity in brain and physiologic networks by pairwise information-theoretic measures of coupling between signals, whose significance and variations between conditions are statistically validated on a single-subject basis through the use of surrogate and bootstrap data analyses. The approach is illustrated on single-subject recordings of (i) resting-state functional magnetic resonance imaging (rest-fMRI) signals acquired in a pediatric patient with hepatic encephalography associated to a portosystemic shunt and undergoing liver vascular shunt correction, and of (ii) cardiovascular and cerebrovascular time series acquired at rest and during head-up tilt in a subject suffering from orthostatic intolerance.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Criança , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Projetos de Pesquisa , Fatores de Tempo
6.
Artigo em Inglês | MEDLINE | ID: mdl-38083242

RESUMO

Heart rate variability results from the coupled activity of the cardiovascular and cardiorespiratory systems, which have their own internal regulation mechanisms but also interact with each other and with the autonomic nervous system to maintain homeostasis. In this work, the assessment of these physiological mechanisms is carried out decomposing the Mutual Information Rate (MIR), an information-theoretic measure of the interdependence between coupled processes, into terms of entropy rate or conditional mutual information related respectively to complexity and causality measures. These measures are computed using a non-parametric approach based on nearest-neighbors. The proposed framework is first tested on simulated autoregressive processes and then applied to experimental data consisting of heart period and respiratory time series measured in healthy subjects monitored at rest and during head-up tilt. Our results evidence that MIR decomposition is able to highlight the interdependence of short-term physiological mechanisms of cardiorespiratory interactions during postural stress.


Assuntos
Sistema Cardiovascular , Coração , Humanos , Pressão Sanguínea/fisiologia , Coração/fisiologia , Respiração , Taxa Respiratória
7.
Artigo em Inglês | MEDLINE | ID: mdl-38083690

RESUMO

In this work, we perform a comparative analysis of discrete- and continuous-time estimators of information-theoretic measures quantifying the concept of memory utilization in short-term heart rate variability (HRV). Specifically, considering heartbeat intervals in discrete time we compute the measure of information storage (IS) and decompose it into immediate memory utilization (IMU) and longer memory utilization (MU) terms; considering the timings of heartbeats in continuous time we compute the measure of MU rate (MUR). All measures are computed through model-free approaches based on nearest neighbor entropy estimators applied to the HRV series of a group of 15 healthy subjects measured at rest and during postural stress. We find, moving from rest to stress, statistically significant increases of the IS and the IMU, as well as of the MUR. Our results suggest that both discrete-time and continuous-time approaches can detect the higher predictive capacity of HRV occurring with postural stress, and that such increased memory utilization is due to fast mechanisms likely related to sympathetic activation.


Assuntos
Memória de Curto Prazo , Humanos , Frequência Cardíaca/fisiologia , Entropia , Voluntários Saudáveis
8.
IEEE Trans Biomed Eng ; PP2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055366

RESUMO

OBJECTIVE: Concepts of Granger causality (GC) and Granger autonomy (GA) are central to assess the dynamics of coupled physiologic processes. While causality measures have been already proposed and largely applied in time and frequency domains, measures quantifying self-dependencies are still limited to the time-domain formulation and lack of a clear spectral representation. METHODS: We embed into the classical linear parametric framework for computing GC from a driver random process X to a target process Y a measure of Granger Isolation (GI) quantifying the part of the dynamics of Y not originating from X, and a new spectral measure of GA assessing frequency-specific patterns of self-dependencies in Y. The framework is formulated in a way such that the full-frequency integration of the spectral GC, GI and GA measures returns the corresponding time-domain measures. The measures are illustrated in theoretical simulations and applied to time series of mean arterial pressure and cerebral blood flow velocity obtained in subjects prone to develop postural syncope and healthy controls. RESULTS: simulations show that GI is complementary to GC but not trivially related to it, while GA reflects the regularity of the internal dynamics of the analyzed target process. In the application to cerebrovascular interactions, spectral GA quantified the physiological response to postural stress of slow cerebral blood flow oscillations, while spectral GC and GI detected an altered response to postural stress in subjects prone to syncope, likely related to impaired cerebral autoregulation. CONCLUSION AND SIGNIFICANCE: The new spectral measures of GI and GA are useful complements to GC for the analysis of interacting oscillatory processes, and detect physiological and pathological responses to postural stress which cannot be traced in the time domain. The thorough assessment of causality, isolation and autonomy opens new perspectives for the analysis of coupled biological processes in both physiological and clinical investigations.

9.
Front Netw Physiol ; 3: 1242505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920446

RESUMO

Network Physiology is a rapidly growing field of study that aims to understand how physiological systems interact to maintain health. Within the information theory framework the information storage (IS) allows to measure the regularity and predictability of a dynamic process under stationarity assumption. However, this assumption does not allow to track over time the transient pathways occurring in the dynamical activity of a physiological system. To address this limitation, we propose a time-varying approach based on the recursive least squares algorithm (RLS) for estimating IS at each time instant, in non-stationary conditions. We tested this approach in simulated time-varying dynamics and in the analysis of electroencephalographic (EEG) signals recorded from healthy volunteers and timed with the heartbeat to investigate brain-heart interactions. In simulations, we show that the proposed approach allows to track both abrupt and slow changes in the information stored in a physiological system. These changes are reflected in its evolution and variability over time. The analysis of brain-heart interactions reveals marked differences across the cardiac cycle phases of the variability of the time-varying IS. On the other hand, the average IS values exhibit a weak modulation over parieto-occiptal areas of the scalp. Our study highlights the importance of developing more advanced methods for measuring IS that account for non-stationarity in physiological systems. The proposed time-varying approach based on RLS represents a useful tool for identifying spatio-temporal dynamics within the neurocardiac system and can contribute to the understanding of brain-heart interactions.

10.
Life (Basel) ; 13(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895456

RESUMO

Keeping up with the shift towards personalized neuroscience essentially requires the derivation of meaningful insights from individual brain signal recordings by analyzing the descriptive indexes of physio-pathological states through statistical methods that prioritize subject-specific differences under varying experimental conditions. Within this framework, the current study presents a methodology for assessing the value of the single-subject fingerprints of brain functional connectivity, assessed both by standard pairwise and novel high-order measures. Functional connectivity networks, which investigate the inter-relationships between pairs of brain regions, have long been a valuable tool for modeling the brain as a complex system. However, their usefulness is limited by their inability to detect high-order dependencies beyond pairwise correlations. In this study, by leveraging multivariate information theory, we confirm recent evidence suggesting that the brain contains a plethora of high-order, synergistic subsystems that would go unnoticed using a pairwise graph structure. The significance and variations across different conditions of functional pairwise and high-order interactions (HOIs) between groups of brain signals are statistically verified on an individual level through the utilization of surrogate and bootstrap data analyses. The approach is illustrated on the single-subject recordings of resting-state functional magnetic resonance imaging (rest-fMRI) signals acquired using a pediatric patient with hepatic encephalopathy associated with a portosystemic shunt and undergoing liver vascular shunt correction. Our results show that (i) the proposed single-subject analysis may have remarkable clinical relevance for subject-specific investigations and treatment planning, and (ii) the possibility of investigating brain connectivity and its post-treatment functional developments at a high-order level may be essential to fully capture the complexity and modalities of the recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA