Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0300786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748663

RESUMO

Cognitive Arousal, frequently elicited by environmental stressors that exceed personal coping resources, manifests in measurable physiological markers, notably in galvanic skin responses. This effect is prominent in cognitive tasks such as composition, where fluctuations in these biomarkers correlate with individual expressiveness. It is crucial to understand the nexus between cognitive arousal and expressiveness. However, there has not been a concrete study that investigates this inter-relation concurrently. Addressing this, we introduce an innovative methodology for simultaneous monitoring of these elements. Our strategy employs Bayesian analysis in a multi-state filtering format to dissect psychomotor performance (captured through typing speed), galvanic skin response or skin conductance (SC), and heart rate variability (HRV). This integrative analysis facilitates the quantification of expressive behavior and arousal states. At the core, we deploy a state-space model connecting one latent psychological arousal condition to neural activities impacting sweating (inferred through SC responses) and another latent state to expressive behavior during typing. These states are concurrently evaluated with model parameters using an expectation-maximization algorithms approach. Assessments using both computer-simulated data and experimental data substantiate the validity of our approach. Outcomes display distinguishable latent state patterns in expressive typing and arousal across different computer software used in office management, offering profound implications for Human-Computer Interaction (HCI) and productivity analysis. This research marks a significant advancement in decoding human productivity dynamics, with extensive repercussions for optimizing performance in telecommuting scenarios.


Assuntos
Nível de Alerta , Teorema de Bayes , Cognição , Resposta Galvânica da Pele , Frequência Cardíaca , Humanos , Nível de Alerta/fisiologia , Resposta Galvânica da Pele/fisiologia , Frequência Cardíaca/fisiologia , Cognição/fisiologia , Masculino , Feminino , Adulto , Desempenho Psicomotor/fisiologia , Teletrabalho , Eficiência/fisiologia , Algoritmos , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-38082631

RESUMO

Leptin, a hormone secreted by adipose tissue, is primarily responsible for inhibiting hunger and maintaining energy balance. Improper leptin secretion may result in hyperleptinemia (excess secretion of leptin) or leptin resistance, both of which contribute to obesity. Diagnosing abnormal leptin secretion may help treat this underlying cause of obesity. Therefore, continuous monitoring of the level of leptin may help characterize its secretion dynamics and also help devise an appropriate treatment. In this research, we consider leptin hormone concentration data taken over a 24 hour time period from eighteen healthy premenopausal obese women before and after treatment with a dopamine agonist, bromocriptine, and deconvolve the observed leptin hormone levels to estimate the number, timing, and magnitude of the underlying leptin secretory pulses. We find that there is an overall decrease in leptin secretion, particularly during sleep, but the changes in the secretory and clearance rates, and the number of pulses underlying the secretion process are not statistically significant.Clinical relevance- This work seeks to understand the effect of bromocriptine on leptin secretory dynamics and will help further current understanding of the effect of bromocriptine in relation to obesity.


Assuntos
Bromocriptina , Leptina , Humanos , Feminino , Leptina/farmacologia , Bromocriptina/farmacologia , Bromocriptina/uso terapêutico , Obesidade/complicações , Tecido Adiposo , Pré-Menopausa
3.
Artigo em Inglês | MEDLINE | ID: mdl-38083379

RESUMO

Cortisol is a neuroendocrine hormone of the hypothalamus-pituitary-adrenal (HPA) axis secreted from adrenal glands in response to stimulation by adrenocorticotropic hormone (ACTH) from the anterior pituitary and corticotropin releasing hormone (CRH) from the hypothalamus. Cortisol has multiple functionalities in maintaining bodily homeostasis - including anti-inflammatory influences - through its diurnal secretion pattern (which has been studied extensively); its secretion is also increased in response to major traumatic events such as surgery. Due to the adverse health consequences of an abnormal immune response, it is crucial to understand the effect of cortisol in modulating inflammation. To address this physiological issue, we characterize the secretion of cortisol using a high temporal resolution dataset of ten patients undergoing coronary arterial bypass grafting (CABG) surgery, in comparison with a control group not undergoing surgery. We find that cortisol exhibits different pulsatile dynamics in those undergoing cardiac surgery compared to the control subjects. We also summarize the causality of cortisol's relationship with different cytokines (which are one type of inflammatory markers) by performing Granger causality analysis.Clinical relevance- This work documents time-varying patterns of the HPA axis hormone cortisol in the inflammatory response to cardiac surgery and may eventually help improve patients' prognosis post-surgery (or in other conditions) by enabling early detection of an abnormal cortisol or inflammatory response and enabling patient specific remedial interventions.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Hidrocortisona , Humanos , Hidrocortisona/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Hormônio Adrenocorticotrópico/farmacologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38083382

RESUMO

Emotional valence is difficult to be inferred since it is related to several psychological factors and is affected by inter- and intra-subject variability. Changes in emotional valence have been found to cause a physiological response in respiration signals. In this study, we propose a state-space model and decode the valence by analyzing a person's respiration pattern. Particularly, we generate a binary point process based on features that are indicative of changes in respiration pattern as a result of an emotional valence response. High valence is typically associated with faster and deeper breathing. As a result, (i)depth of breath, (ii)rate of respiration, and (iii) breathing cycle time are indicators of high valence and used to generate the binary point process representing underlying neural stimuli associated with changes in valence. We utilize an expectation-maximization (EM) framework to decode a hidden valence state and the associated valence index. This predicted valence state is compared to self-reported valence ratings to optimize the parameters and determine the accuracy of the model. The accuracy of the model in predicting high and low valence events is found to be 77% and 73%, respectively. Our study can be applied towards the long term analysis of valence. Additionally, it has applications in a closed-loop system procedures and wearable design paradigm to track and regulate the emotional valence.


Assuntos
Emoções , Respiração , Humanos , Emoções/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38083779

RESUMO

Major bodily trauma such as cardiac surgery elicits (in response to tissue injury and other exogenous surgical factors) a whole-body inflammation response during which specialized signaling proteins called cytokines are synthesized and invoke multiple defense mechanisms. Many proinflammatory and anti-inflammatory cytokines such as interleukins (IL) and tumor necrosis factor (TNF) are produced to initiate bodily repair. Due to the adverse health consequences, including mortality, of a maladaptive cytokine response, understanding their complex dynamics using system-theoretic modeling and analysis may pave the way for controlling the inflammatory response which may eventually improve medical outcomes for patients. To this end, we use clinical data from ten patients undergoing coronary arterial bypass graft surgery to study the response of four cytokines (IL6, IL8, IL10, TNFα) and the neuroendocrine hormone cortisol. We perform deconvolution to obtain the secretory pulses underlying their pulsatile production and analyze causal interactions, mathematically uncovering some interactive relationships found in previous experimental studies.Clinical relevance- This work is a first step towards a mechanistic inference of the inflammatory response to surgery that could eventually help control the inflammatory response and could inform medical interventions to improve patient outcomes.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Citocinas , Humanos , Fator de Necrose Tumoral alfa , Hidrocortisona , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte de Artéria Coronária/efeitos adversos
6.
Sci Rep ; 13(1): 12399, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553409

RESUMO

Inspired by advances in wearable technologies, we design and perform human-subject experiments. We aim to investigate the effects of applying safe actuation (i.e., auditory, gustatory, and olfactory) for the purpose of regulating cognitive arousal and enhancing the performance states. In two proposed experiments, subjects are asked to perform a working memory experiment called n-back tasks. Next, we incorporate listening to different types of music, drinking coffee, and smelling perfume as safe actuators. We employ signal processing methods to seamlessly infer participants' brain cognitive states. The results demonstrate the effectiveness of the proposed safe actuation in regulating the arousal state and enhancing performance levels. Employing only wearable devices for human monitoring and using safe actuation intervention are the key components of the proposed experiments. Our dataset fills the existing gap of the lack of publicly available datasets for the self-management of internal brain states using wearable devices and safe everyday actuators. This dataset enables further machine learning and system identification investigations to facilitate future smart work environments. This would lead us to the ultimate idea of developing practical automated personalized closed-loop architectures for managing internal brain states and enhancing the quality of life.


Assuntos
Estimulação Acústica , Encéfalo , Cognição , Memória de Curto Prazo , Olfato , Paladar , Dispositivos Eletrônicos Vestíveis , Feminino , Humanos , Masculino , Nível de Alerta/fisiologia , Encéfalo/fisiologia , Café , Cognição/fisiologia , Conjuntos de Dados como Assunto , Memória de Curto Prazo/fisiologia , Música , Perfumes , Projetos Piloto , Qualidade de Vida , Olfato/fisiologia , Paladar/fisiologia , Adulto , Eletroencefalografia
7.
IEEE Trans Biomed Eng ; 70(1): 343-353, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839187

RESUMO

OBJECTIVE: Internal physiological processes govern multiple state variables within the human body. Estimating these from point process-type bioelectric and biochemical observations is a challenge. Here we seek to estimate cortisol-related energy production and sympathetic arousal based on point process and continuous-valued data while permitting an external influence to affect the state estimates. METHODS: Traditional point process state-space methods, such as those used for estimating the aforementioned quantities from cortisol and skin conductance measurements respectively, suffer from the inability to permit the state estimates to also fit to an external influence (e.g. labels) or be guided by it. Here we modify an existing recurrent neural network (RNN) approach for state-space estimation through a weighted cost-function to enable a hybrid estimator that has this capability. RESULTS: Results on cortisol data based on a hypothetical sleep-wake influence term show how energy production can be estimated by permitting the estimates to fit to the external influence as much as desired. We further show how overfitting may be reduced by using circadian rhythm-based influence terms. Results on skin conductance data also indicate how the method can be used to estimate sympathetic arousal in an experiment containing stressors and relaxation, and permit an external influence as well. CONCLUSION: The RNN-based hybrid method is thus able to recover internal physiological states from point process and continuous-valued observations while permitting an external influence to guide the estimates. SIGNIFICANCE: The hybrid estimator could be embedded within wearable monitors that can be tailored based on domain expertise or individual feedback.


Assuntos
Nível de Alerta , Hidrocortisona , Humanos , Nível de Alerta/fisiologia , Redes Neurais de Computação , Algoritmos , Sono , Ritmo Circadiano
8.
IEEE Open J Eng Med Biol ; 4: 234-250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38196978

RESUMO

Goal: Inferring autonomous nervous system (ANS) activity is a challenging issue and has critical applications in stress regulation. Sweat secretions caused by ANS activity influence the electrical conductance of the skin. Therefore, the variations in skin conductance (SC) measurements reflect the sudomotor nerve activity (SMNA) and can be used to infer the underlying ANS activity. These variations are strongly correlated with emotional arousal as well as thermoregulation. However, accurately recovering ANS activity and the corresponding state-space system from a single channel signal is difficult due to artifacts introduced by measurement noise. To minimize the impact of noise on inferring ANS activity, we utilize multiple channels of SC data. Methods: We model skin conductance using a second-order differential equation incorporating a time-shifted sparse impulse train input in combination with independent cubic basis spline functions. Finally, we develop a block coordinate descent method for SC signal decomposition by employing a generalized cross-validation sparse recovery approach while including physiological priors. Results: We analyze the experimental data to validate the performance of the proposed algorithm. We demonstrate its capacity to recover the ANS activations, the underlying physiological system parameters, and both tonic and phasic components. Finally, we present an overview of the algorithm's comparative performance under varying conditions and configurations to substantiate its ability to accurately model ANS activity. Our results show that our algorithm performs better in terms of multiple metrics like noise performance, AUC score, the goodness of fit of reconstructed signal, and lower missing impulses compared with the single channel decomposition approach. Conclusion: In this study, we highlight the challenges and benefits of concurrent decomposition and deconvolution of multichannel SC signals.

9.
PLoS Comput Biol ; 18(7): e1010275, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35900988

RESUMO

Electrodermal activities (EDA) are any electrical phxenomena observed on the skin. Skin conductance (SC), a measure of EDA, shows fluctuations due to autonomic nervous system (ANS) activation induced sweat secretion. Since it can capture psychophysiological information, there is a significant rise in the research work for tracking mental and physiological health with EDA. However, the current state-of-the-art lacks a physiologically motivated approach for real-time inference of ANS activation from EDA. Therefore, firstly, we propose a comprehensive model for the SC dynamics. The proposed model is a 3D state-space representation of the direct secretion of sweat via pore opening and diffusion followed by corresponding evaporation and reabsorption. As the input to the model, we consider a sparse signal representing the ANS activation that causes the sweat glands to produce sweat. Secondly, we derive a scalable fixed-interval smoother-based sparse recovery approach utilizing the proposed comprehensive model to infer the ANS activation enabling edge computation. We incorporate a generalized-cross-validation to tune the sparsity level. Finally, we propose an Expectation-Maximization based deconvolution approach for learning the model parameters during the ANS activation inference. For evaluation, we utilize a dataset with 26 participants, and the results show that our comprehensive state-space model can successfully describe the SC variations with high scalability, showing the feasibility of real-time applications. Results validate that our physiology-motivated state-space model can comprehensively explain the EDA and outperforms all previous approaches. Our findings introduce a whole new perspective and have a broader impact on the standard practices of EDA analysis.


Assuntos
Sistema Nervoso Autônomo , Resposta Galvânica da Pele , Humanos , Fenômenos Fisiológicos da Pele
10.
Front Endocrinol (Lausanne) ; 13: 769951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480480

RESUMO

The prevalence of obesity is increasing around the world at an alarming rate. The interplay of the hormone leptin with the hypothalamus-pituitary-adrenal axis plays an important role in regulating energy balance, thereby contributing to obesity. This study presents a mathematical model, which describes hormonal behavior leading to an energy abnormal equilibrium that contributes to obesity. To this end, we analyze the behavior of two neuroendocrine hormones, leptin and cortisol, in a cohort of women with obesity, with simplified minimal state-space modeling. Using a system theoretic approach, coordinate descent method, and sparse recovery, we deconvolved the serum leptin-cortisol levels. Accordingly, we estimate the secretion patterns, timings, amplitudes, number of underlying pulses, infusion, and clearance rates of hormones in eighteen premenopausal women with obesity. Our results show that minimal state-space model was able to successfully capture the leptin and cortisol sparse dynamics with the multiple correlation coefficients greater than 0.83 and 0.87, respectively. Furthermore, the Granger causality test demonstrated a negative prospective predictive relationship between leptin and cortisol, 14 of 18 women. These results indicate that increases in cortisol are prospectively associated with reductions in leptin and vice versa, suggesting a bidirectional negative inhibitory relationship. As dysregulation of leptin may result in an abnormality in satiety and thereby associated to obesity, the investigation of leptin-cortisol sparse dynamics may offer a better diagnostic methodology to improve better treatments plans for individuals with obesity.


Assuntos
Hidrocortisona , Leptina , Feminino , Humanos , Obesidade , Sistema Hipófise-Suprarrenal , Estudos Prospectivos
11.
Artigo em Inglês | MEDLINE | ID: mdl-35399789

RESUMO

Goal: We propose novel supervised control architectures to regulate the cognitive stress state and close the loop. Methods: We take information present in underlying neural impulses of skin conductance signals and employ model-based control techniques to close the loop in a state-space framework. For performance enhancement, we establish a supervised knowledge-based layer to update control system in real time. In the supervised architecture, the controller parameters are being updated in real-time. Results: Statistical analyses demonstrate the efficiency of supervised control architectures in improving the closed-loop results while maintaining stress levels within a desired range with more optimized control efforts. The model-based approaches would guarantee the control system-perspective criteria such as stability and optimality, and the proposed supervised knowledge-based layer would further enhance their efficiency. Conclusion: Outcomes in this in silico study verify the proficiency of the proposed supervised architectures to be implemented in the real world.

12.
Front Comput Neurosci ; 16: 747735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399915

RESUMO

Affective studies provide essential insights to address emotion recognition and tracking. In traditional open-loop structures, a lack of knowledge about the internal emotional state makes the system incapable of adjusting stimuli parameters and automatically responding to changes in the brain. To address this issue, we propose to use facial electromyogram measurements as biomarkers to infer the internal hidden brain state as feedback to close the loop. In this research, we develop a systematic way to track and control emotional valence, which codes emotions as being pleasant or obstructive. Hence, we conduct a simulation study by modeling and tracking the subject's emotional valence dynamics using state-space approaches. We employ Bayesian filtering to estimate the person-specific model parameters along with the hidden valence state, using continuous and binary features extracted from experimental electromyogram measurements. Moreover, we utilize a mixed-filter estimator to infer the secluded brain state in a real-time simulation environment. We close the loop with a fuzzy logic controller in two categories of regulation: inhibition and excitation. By designing a control action, we aim to automatically reflect any required adjustments within the simulation and reach the desired emotional state levels. Final results demonstrate that, by making use of physiological data, the proposed controller could effectively regulate the estimated valence state. Ultimately, we envision future outcomes of this research to support alternative forms of self-therapy by using wearable machine interface architectures capable of mitigating periods of pervasive emotions and maintaining daily well-being and welfare.

13.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 2463-2470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34110999

RESUMO

Growth hormone (GH) is secreted by cells in the anterior pituitary on two time scales: discrete pulses over minutes that occur within a 24-hr pattern. Secretion reflects the balance of stimulatory and inhibitory inputs from the hypothalamus and is influenced by gonadal steroids, stress, nutrition, and sleep/wake states. We propose a novel approach for the analysis of GH data and use this approach to quantify (i) the timing, amplitude and the number of GH pulses and (ii) GH infusion, clearance and basal secretion (i.e., time invariant) rates, using serum GH sampled every 10 minutes during an 8-hour sleep study in 18 adolescents. In our method, we approximate hormonal secretory events by deconvolving GH data via a two-step coordinate descent approach. The first step utilizes a sparse-recovery approach to estimate the timing and amplitude of GH secretory events. The second step estimates physiological parameters. Our method identifies the timing and amplitude of GH pulses and system parameters from experimental and simulated data, with a median R2 of 0.93, among experimental data. Recovering GH pulses and model parameters using this approach may improve the quantification of GH parameters under different physiological and pathological conditions and the design and monitoring of interventions.


Assuntos
Hormônio do Crescimento Humano , Adolescente , Hormônio do Crescimento , Humanos
15.
J Endocr Soc ; 6(11): bvac146, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37283961

RESUMO

Context: In children, growth hormone (GH) pulses occur after sleep onset in association with slow-wave sleep (SWS). There have been no studies in children to quantify the effect of disrupted sleep on GH secretion. Objective: This study aimed to investigate the effect of acute sleep disruption on GH secretion in pubertal children. Methods: Fourteen healthy individuals (aged 11.3-14.1 years) were randomly assigned to 2 overnight polysomnographic studies, 1 with and 1 without SWS disruption via auditory stimuli, with frequent blood sampling to measure GH. Results: Auditory stimuli delivered during the disrupted sleep night caused a 40.0 ± 7.8% decrease in SWS. On SWS-disrupted sleep nights, the rate of GH pulses during N2 sleep was significantly lower than during SWS (IRR = 0.56; 95% CI, 0.32-0.97). There were no differences in GH pulse rates during the various sleep stages or wakefulness in disrupted compared with undisrupted sleep nights. SWS disruption had no effect on GH pulse amplitude and frequency or basal GH secretion. Conclusion: In pubertal children, GH pulses were temporally associated with episodes of SWS. Acute disruption of sleep via auditory tones during SWS did not alter GH secretion. These results indicate that SWS may not be a direct stimulus of GH secretion.

16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 757-762, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891401

RESUMO

Stress has effects on productivity and performance. Poor stress management may lead to reduced productivity and performance. Non-invasive actuators such as music have the potential to effectively regulate stress. In this study, using a state-space approach, we obtain a performance state to investigate the performance during a working memory task while playing two different types of music in the background. In our experiments, participants performed a working memory task while listening to calming and vexing music of their choice. We utilize the binary correct/incorrect response and the continuous reaction time of the response from the participants to quantify the performance. The state-space quantification reveals that vexing music has a statistically significant positive impact on the obtained performance state. This indicates the feasibility of designing non-invasive closed-loop systems to regulate stress for maximizing performance and productivity.


Assuntos
Música , Percepção Auditiva , Cognição , Humanos , Memória de Curto Prazo , Tempo de Reação
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1055-1060, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891470

RESUMO

Biofeedback systems sense different physiological activities and help with gaining self-awareness. Understanding music's impact on the arousal state is of great importance for biofeedback stress management systems. In this study, we investigate a cognitive-stress-related arousal state modulated by different types of music. During our experiments, each subject was presented with neurological stimuli that elicit a cognitive-stress-related arousal response in a working memory experiment. Moreover, this cognitive-stress-related arousal was modulated by calming and vexing music played in the background. Electrodermal activity and functional near-infrared spectroscopy (fNIRS) measurements both contain information related to cognitive arousal and were collected in our study. By considering various fNIRS features, we selected three features based on variance, root mean square, and local fNIRS peaks as the most informative fNIRS observations in terms of cognitive arousal. The rate of neural impulse occurrence underlying EDA was taken as a binary observation. To retain a low computational complexity for our decoder and select the best fNIRS-based observations, two features were chosen as fNIRS-based observations at a time. A decoder based on one binary and two continuous observations was utilized to estimate the hidden cognitive-stress-related arousal state. This was done by using a Bayesian filtering approach within an expectation-maximization framework. Our results indicate that the decoded cognitive arousal modulated by vexing music was higher than calming music. Among the three fNIRS observations selected, a combination of observations based on root mean square and local fNIRS peaks resulted in the best decoded states for our experimental settings. This study serves as a proof of concept for utilizing fNIRS and EDA measurements to develop a low-dimensional decoder for tracking cognitive-stress-related arousal levels.


Assuntos
Música , Nível de Alerta , Teorema de Bayes , Cognição , Resposta Galvânica da Pele , Espectroscopia de Luz Próxima ao Infravermelho
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6551-6557, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892610

RESUMO

Enhancing the productivity of humans by regulating arousal during cognitive tasks is a challenging topic in psychology that has a great potential to transform workplaces for increased productivity and educational systems for enhanced performance. In this study, we assess the feasibility of using the Yerkes-Dodson law from psychology to improve performance during a working memory experiment. We employ a Bayesian filtering approach to track cognitive arousal and performance. In particular, by utilizing skin conductance signal recorded during a working memory experiment in the presence of music, we decode a cognitive arousal state. This is done by considering the rate of neural impulse occurrences and their amplitudes as observations for the arousal model. Similarly, we decode a performance state using the number of correct and incorrect responses, and the reaction time as binary and continuous behavioral observations, respectively. We estimate the arousal and performance states within an expectation-maximization framework. Thereafter, we design an arousal-performance model on the basis of the Yerkes-Dodson law and estimate the model parameters via regression analysis. In this experiment musical neurofeedback was used to modulate cognitive arousal. Our investigations indicate that music can be used as a mode of actuation to influence arousal and enhance the cognitive performance during working memory tasks. Our findings can have a significant impact on designing future smart workplaces and online educational systems.


Assuntos
Música , Neurorretroalimentação , Nível de Alerta , Teorema de Bayes , Cognição , Humanos
20.
Artigo em Inglês | MEDLINE | ID: mdl-34543199

RESUMO

Real-time continuous tracking of seizure state is necessary to develop feedback neuromodulation therapy that can prevent or terminate a seizure early. Due to its high temporal resolution, high scalp coverage, and non-invasive applicability, electroencephalography (EEG) is a good candidate for seizure tracking. In this research, we make multiple seizure state estimations using a mixed-filter and multiple channels found over the entire sensor space; then by applying a Kalman filter, we produce a single seizure state estimation made up of these individual estimations. Using a modified wrapper feature selection, we determine two optimal features of mixed data type, one continuous and one binary analyzing all available channels. These features are used in a state-space framework to model the continuous hidden seizure state. Expectation maximization is performed offline on the training and validation data sets to estimate unknown parameters. The seizure state estimation process is performed for multiple channels, and the seizure state estimation is derived using a square-root Kalman filter. A second expectation maximization step is utilized to estimate the unknown square-root Kalman filter parameters. This method is tested in a real-time applicable way for seizure state estimation. Applying this approach, we obtain a single seizure state estimation with quantitative information about the likelihood of a seizure occurring, which we call seizure probability. Our results on the experimental data (CHB-MIT EEG database) validate the proposed estimation method and we achieve an average accuracy, sensitivity, and specificity of 92.7%, 92.8%, and 93.4%, respectively. The potential applications of this seizure estimation model are for closed-loop neuromodulation and long-term quantitative analysis of seizure treatment efficacy.


Assuntos
Algoritmos , Eletroencefalografia , Bases de Dados Factuais , Humanos , Couro Cabeludo , Convulsões/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...