Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585876

RESUMO

GenoTools, a Python package, streamlines population genetics research by integrating ancestry estimation, quality control (QC), and genome-wide association studies (GWAS) capabilities into efficient pipelines. By tracking samples, variants, and quality-specific measures throughout fully customizable pipelines, users can easily manage genetics data for large and small studies. GenoTools' "Ancestry" module renders highly accurate predictions, allowing for high-quality ancestry-specific studies, and enables custom ancestry model training and serialization, specified to the user's genotyping or sequencing platform. As the genotype processing engine that powers several large initiatives including the NIH's Center for Alzheimer's and Related Dementias (CARD) and the Global Parkinson's Genetics Program (GP2). GenoTools was used to process and analyze the UK Biobank and major Alzheimer's Disease (AD) and Parkinson's Disease (PD) datasets with over 400,000 genotypes from arrays and 5000 sequences and has led to novel discoveries in diverse populations. It has provided replicable ancestry predictions, implemented rigorous QC, and conducted genetic ancestry-specific GWAS to identify systematic errors or biases through a single command. GenoTools is a customizable tool that enables users to efficiently analyze and scale genotype data with reproducible and scalable ancestry, QC, and GWAS pipelines.

2.
Patterns (N Y) ; 5(3): 100945, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38487808

RESUMO

While machine learning (ML) research has recently grown more in popularity, its application in the omics domain is constrained by access to sufficiently large, high-quality datasets needed to train ML models. Federated learning (FL) represents an opportunity to enable collaborative curation of such datasets among participating institutions. We compare the simulated performance of several models trained using FL against classically trained ML models on the task of multi-omics Parkinson's disease prediction. We find that FL model performance tracks centrally trained ML models, where the most performant FL model achieves an AUC-PR of 0.876 ± 0.009, 0.014 ± 0.003 less than its centrally trained variation. We also determine that the dispersion of samples within a federation plays a meaningful role in model performance. Our study implements several open-source FL frameworks and aims to highlight some of the challenges and opportunities when applying these collaborative methods in multi-omics studies.

3.
Am J Hum Genet ; 111(1): 150-164, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181731

RESUMO

Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Recursos Comunitários , Multiômica , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Análise da Randomização Mendeliana
4.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986893

RESUMO

While machine learning (ML) research has recently grown more in popularity, its application in the omics domain is constrained by access to sufficiently large, high-quality datasets needed to train ML models. Federated Learning (FL) represents an opportunity to enable collaborative curation of such datasets among participating institutions. We compare the simulated performance of several models trained using FL against classically trained ML models on the task of multi-omics Parkinson's Disease prediction. We find that FL model performance tracks centrally trained ML models, where the most performant FL model achieves an AUC-PR of 0.876 ± 0.009, 0.014 ± 0.003 less than its centrally trained variation. We also determine that the dispersion of samples within a federation plays a meaningful role in model performance. Our study implements several open source FL frameworks and aims to highlight some of the challenges and opportunities when applying these collaborative methods in multi-omics studies.

5.
medRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37986827

RESUMO

The relationship between sleep disorders and neurodegeneration is complex and multi-faceted. Using over one million electronic health records (EHRs) from Wales, UK, and Finland, we mined biobank data to identify the relationships between sleep disorders and the subsequent manifestation of neurodegenerative diseases (NDDs) later in life. We then examined how these sleep disorders' severity impacts neurodegeneration risk. Additionally, we investigated how sleep attributed risk may compensate for the lack of genetic risk factors (i.e. a lower polygenic risk score) in NDD manifestation. We found that sleep disorders such as sleep apnea were associated with the risk of Alzheimer's disease (AD), amyotrophic lateral sclerosis, dementia, Parkinson's disease (PD), and vascular dementia in three national scale biobanks, with hazard ratios (HRs) ranging from 1.31 for PD to 5.11 for dementia. These sleep disorders imparted significant risk up to 15 years before the onset of an NDD. Cumulative number of sleep disorders in the EHRs were associated with a higher risk of neurodegeneration for dementia and vascular dementia. Sleep related risk factors were independent of genetic risk for Alzheimer's and Parkinson's, potentially compensating for low genetic risk in overall disease etiology. There is a significant multiplicative interaction regarding the combined risk of sleep disorders and Parkinson's disease. Poor sleep hygiene and sleep apnea are relatively modifiable risk factors with several treatment options, including CPAP and surgery, that could potentially reduce the risk of neurodegeneration. This is particularly interesting in how sleep related risk factors are significantly and independently enriched in manifesting NDD patients with low levels of genetic risk factors for these diseases.

6.
medRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37986980

RESUMO

Genome-wide genotyping platforms have the capacity to capture genetic variation across different populations, but there have been disparities in the representation of population-dependent genetic diversity. The motivation for pursuing this endeavor was to create a comprehensive genome-wide array capable of encompassing a wide range of neuro-specific content for the Global Parkinson's Genetics Program (GP2) and the Center for Alzheimer's and Related Dementias (CARD). CARD aims to increase diversity in genetic studies, using this array as a tool to foster inclusivity. GP2 is the first supported resource project of the Aligning Science Across Parkinson's (ASAP) initiative that aims to support a collaborative global effort aimed at significantly accelerating the discovery of genetic factors contributing to Parkinson's disease and atypical parkinsonism by generating genome-wide data for over 200,000 individuals in a multi-ancestry context. Here, we present the Illumina NeuroBooster array (NBA), a novel, high-throughput and cost-effective custom-designed content platform to screen for genetic variation in neurological disorders across diverse populations. The NBA contains a backbone of 1,914,934 variants (Infinium Global Diversity Array) complemented with custom content of 95,273 variants implicated in over 70 neurological conditions or traits with potential neurological complications. Furthermore, the platform includes over 10,000 tagging variants to facilitate imputation and analyses of neurodegenerative disease-related GWAS loci across diverse populations. The NBA can identify low frequency variants and accurately impute over 15 million common variants from the latest release of the TOPMed Imputation Server as of August 2023 (reference of over 300 million variants and 90,000 participants). We envisage this valuable tool will standardize genetic studies in neurological disorders across different ancestral groups, allowing researchers to perform genetic research inclusively and at a global scale.

7.
Cell Rep Methods ; 3(10): 100593, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37729920

RESUMO

Here, we present a standardized, "off-the-shelf" proteomics pipeline working in a single 96-well plate to achieve deep coverage of cellular proteomes with high throughput and scalability. This integrated pipeline streamlines a fully automated sample preparation platform, a data-independent acquisition (DIA) coupled with high-field asymmetric waveform ion mobility spectrometer (FAIMS) interface, and an optimized library-free DIA database search strategy. Our systematic evaluation of FAIMS-DIA showing single compensation voltage (CV) at -35 V not only yields the deepest proteome coverage but also best correlates with DIA without FAIMS. Our in-depth comparison of direct-DIA database search engines shows that Spectronaut outperforms others, providing the highest quantifiable proteins. Next, we apply three common DIA strategies in characterizing human induced pluripotent stem cell (iPSC)-derived neurons and show single-shot mass spectrometry (MS) using single-CV (-35 V)-FAIMS-DIA results in >9,000 quantifiable proteins with <10% missing values, as well as superior reproducibility and accuracy compared with other existing DIA methods.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteômica , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Células-Tronco Pluripotentes Induzidas/química , Proteoma/análise
8.
Patterns (N Y) ; 4(6): 100741, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409055

RESUMO

High-dimensional data analysis starts with projecting the data to low dimensions to visualize and understand the underlying data structure. Several methods have been developed for dimensionality reduction, but they are limited to cross-sectional datasets. The recently proposed Aligned-UMAP, an extension of the uniform manifold approximation and projection (UMAP) algorithm, can visualize high-dimensional longitudinal datasets. We demonstrated its utility for researchers to identify exciting patterns and trajectories within enormous datasets in biological sciences. We found that the algorithm parameters also play a crucial role and must be tuned carefully to utilize the algorithm's potential fully. We also discussed key points to remember and directions for future extensions of Aligned-UMAP. Further, we made our code open source to enhance the reproducibility and applicability of our work. We believe our benchmarking study becomes more important as more and more high-dimensional longitudinal data in biomedical research become available.

9.
Dev Cell ; 58(18): 1782-1800.e10, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37494933

RESUMO

Despite the key roles of perilipin-2 (PLIN2) in governing lipid droplet (LD) metabolism, the mechanisms that regulate PLIN2 levels remain incompletely understood. Here, we leverage a set of genome-edited human PLIN2 reporter cell lines in a series of CRISPR-Cas9 loss-of-function screens, identifying genetic modifiers that influence PLIN2 expression and post-translational stability under different metabolic conditions and in different cell types. These regulators include canonical genes that control lipid metabolism as well as genes involved in ubiquitination, transcription, and mitochondrial function. We further demonstrate a role for the E3 ligase MARCH6 in regulating triacylglycerol biosynthesis, thereby influencing LD abundance and PLIN2 stability. Finally, our CRISPR screens and several published screens provide the foundation for CRISPRlipid (http://crisprlipid.org), an online data commons for lipid-related functional genomics data. Our study identifies mechanisms of PLIN2 and LD regulation and provides an extensive resource for the exploration of LD biology and lipid metabolism.


Assuntos
Sistemas CRISPR-Cas , Gotículas Lipídicas , Humanos , Perilipina-2/genética , Perilipina-2/metabolismo , Gotículas Lipídicas/metabolismo , Sistemas CRISPR-Cas/genética , Metabolismo dos Lipídeos/genética , Linhagem Celular
10.
Brain ; 146(11): 4486-4494, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37192343

RESUMO

Overlapping symptoms and co-pathologies are common in closely related neurodegenerative diseases (NDDs). Investigating genetic risk variants across these NDDs can give further insight into disease manifestations. In this study we have leveraged genome-wide single nucleotide polymorphisms and genome-wide association study summary statistics to cluster patients based on their genetic status across identified risk variants for five NDDs (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Lewy body dementia and frontotemporal dementia). The multi-disease and disease-specific clustering results presented here provide evidence that NDDs have more overlapping genetic aetiology than previously expected and how neurodegeneration should be viewed as a spectrum of symptomology. These clustering analyses also show potential subsets of patients with these diseases that are significantly depleted for any known common genetic risk factors suggesting environmental or other factors at work. Establishing that NDDs with overlapping pathologies share genetic risk loci, future research into how these variants might have different effects on downstream protein expression, pathology and NDD manifestation in general is important for refining and treating NDDs.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/genética , Estudo de Associação Genômica Ampla , Doença de Parkinson/genética , Doença por Corpos de Lewy/genética , Doença de Alzheimer/genética , Fatores de Risco
11.
medRxiv ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37090611

RESUMO

Treatments for neurodegenerative disorders remain rare, although recent FDA approvals, such as Lecanemab and Aducanumab for Alzheimer's Disease, highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use Summary-data-based Mendelian Randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer's disease, 3 amyotrophic lateral sclerosis, 5 Lewy body dementia, 46 Parkinson's disease, and 9 Progressive supranuclear palsy target genes passing multiple test corrections (pSMR_multi < 2.95×10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics - classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these 69.8% are expressed in the disease relevant cell type from single nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as Riluzole in AD. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community [https://nih-card-ndd-smr-home-syboky.streamlit.app/].

12.
Neuron ; 111(7): 1086-1093.e2, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36669485

RESUMO

With recent findings connecting the Epstein-Barr virus to an increased risk of multiple sclerosis and growing concerns regarding the neurological impact of the coronavirus pandemic, we examined potential links between viral exposures and neurodegenerative disease risk. Using time series data from FinnGen for discovery and cross-sectional data from the UK Biobank for replication, we identified 45 viral exposures significantly associated with increased risk of neurodegenerative disease and replicated 22 of these associations. The largest effect association was between viral encephalitis exposure and Alzheimer's disease. Influenza with pneumonia was significantly associated with five of the six neurodegenerative diseases studied. We also replicated the Epstein-Barr/multiple sclerosis association. Some of these exposures were associated with an increased risk of neurodegeneration up to 15 years after infection. As vaccines are currently available for some of the associated viruses, vaccination may be a way to reduce some risk of neurodegenerative disease.


Assuntos
Doença de Alzheimer , Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/epidemiologia , Estudos Transversais , Bancos de Espécimes Biológicos , Herpesvirus Humano 4 , Esclerose Múltipla/epidemiologia
13.
BMC Bioinformatics ; 23(1): 567, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36587217

RESUMO

BACKGROUND: Gene set enrichment analysis (detecting phenotypic terms that emerge as significant in a set of genes) plays an important role in bioinformatics focused on diseases of genetic basis. To facilitate phenotype-oriented gene set analysis, we developed PhenoExam, a freely available R package for tool developers and a web interface for users, which performs: (1) phenotype and disease enrichment analysis on a gene set; (2) measures statistically significant phenotype similarities between gene sets and (3) detects significant differential phenotypes or disease terms across different databases. RESULTS: PhenoExam generates sensitive and accurate phenotype enrichment analyses. It is also effective in segregating gene sets or Mendelian diseases with very similar phenotypes. We tested the tool with two similar diseases (Parkinson and dystonia), to show phenotype-level similarities but also potentially interesting differences. Moreover, we used PhenoExam to validate computationally predicted new genes potentially associated with epilepsy. CONCLUSIONS: We developed PhenoExam, a freely available R package and Web application, which performs phenotype enrichment and disease enrichment analysis on gene set G, measures statistically significant phenotype similarities between pairs of gene sets G and G' and detects statistically significant exclusive phenotypes or disease terms, across different databases. We proved with simulations and real cases that it is useful to distinguish between gene sets or diseases with very similar phenotypes. Github R package URL is https://github.com/alexcis95/PhenoExam . Shiny App URL is https://alejandrocisterna.shinyapps.io/phenoexamweb/ .


Assuntos
Biologia Computacional , Software , Bases de Dados Factuais , Fenótipo , Bases de Dados Genéticas
14.
NPJ Parkinsons Dis ; 8(1): 172, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526647

RESUMO

The clinical manifestations of Parkinson's disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct disease subtypes as well as improved, individualized predictions of the disease course. We used unsupervised and supervised machine learning methods on comprehensive, longitudinal clinical data from the Parkinson's Disease Progression Marker Initiative (n = 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an independent, clinically well-characterized cohort from the Parkinson's Disease Biomarker Program (n = 263 cases). Our analysis distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast disease progression. We achieved highly accurate projections of disease progression 5 years after initial diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 ± 0.01) for the slower progressing group (PDvec1), 0.87 ± 0.03 for moderate progressors, and 0.95 ± 0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as a significant indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent cohort, released the analytical code, and developed models in an open science manner. Our data-driven study provides insights to deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of significant clinical outcomes. We anticipate that machine learning models will improve patient counseling, clinical trial design, and ultimately individualized patient care.

15.
Cell Stem Cell ; 29(12): 1685-1702.e22, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459969

RESUMO

Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate human iPSC lines and deeply characterized their genetic properties using whole genome sequencing, their genomic stability upon CRISPR-Cas9-based gene editing, and their phenotypic properties including differentiation to commonly used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Edição de Genes , Bioensaio
16.
Nat Neurosci ; 25(9): 1149-1162, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953545

RESUMO

Microglia are emerging as key drivers of neurological diseases. However, we lack a systematic understanding of the underlying mechanisms. Here, we present a screening platform to systematically elucidate functional consequences of genetic perturbations in human induced pluripotent stem cell-derived microglia. We developed an efficient 8-day protocol for the generation of microglia-like cells based on the inducible expression of six transcription factors. We established inducible CRISPR interference and activation in this system and conducted three screens targeting the 'druggable genome'. These screens uncovered genes controlling microglia survival, activation and phagocytosis, including neurodegeneration-associated genes. A screen with single-cell RNA sequencing as the readout revealed that these microglia adopt a spectrum of states mirroring those observed in human brains and identified regulators of these states. A disease-associated state characterized by osteopontin (SPP1) expression was selectively depleted by colony-stimulating factor-1 (CSF1R) inhibition. Thus, our platform can systematically uncover regulators of microglial states, enabling their functional characterization and therapeutic targeting.


Assuntos
Células-Tronco Pluripotentes Induzidas , Microglia , Encéfalo/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Microglia/metabolismo , Fagocitose/genética
17.
NPJ Parkinsons Dis ; 8(1): 35, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365675

RESUMO

Personalized medicine promises individualized disease prediction and treatment. The convergence of machine learning (ML) and available multimodal data is key moving forward. We build upon previous work to deliver multimodal predictions of Parkinson's disease (PD) risk and systematically develop a model using GenoML, an automated ML package, to make improved multi-omic predictions of PD, validated in an external cohort. We investigated top features, constructed hypothesis-free disease-relevant networks, and investigated drug-gene interactions. We performed automated ML on multimodal data from the Parkinson's progression marker initiative (PPMI). After selecting the best performing algorithm, all PPMI data was used to tune the selected model. The model was validated in the Parkinson's Disease Biomarker Program (PDBP) dataset. Our initial model showed an area under the curve (AUC) of 89.72% for the diagnosis of PD. The tuned model was then tested for validation on external data (PDBP, AUC 85.03%). Optimizing thresholds for classification increased the diagnosis prediction accuracy and other metrics. Finally, networks were built to identify gene communities specific to PD. Combining data modalities outperforms the single biomarker paradigm. UPSIT and PRS contributed most to the predictive power of the model, but the accuracy of these are supplemented by many smaller effect transcripts and risk SNPs. Our model is best suited to identifying large groups of individuals to monitor within a health registry or biobank to prioritize for further testing. This approach allows complex predictive models to be reproducible and accessible to the community, with the package, code, and results publicly available.

18.
Lancet Digit Health ; 4(5): e359-e369, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35341712

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is known to represent a collection of overlapping syndromes. Various classification systems based on empirical observations have been proposed, but it is unclear to what extent they reflect ALS population substructures. We aimed to use machine-learning techniques to identify the number and nature of ALS subtypes to obtain a better understanding of this heterogeneity, enhance our understanding of the disease, and improve clinical care. METHODS: In this retrospective study, we applied unsupervised Uniform Manifold Approximation and Projection [UMAP]) modelling, semi-supervised (neural network UMAP) modelling, and supervised (ensemble learning based on LightGBM) modelling to a population-based discovery cohort of patients who were diagnosed with ALS while living in the Piedmont and Valle d'Aosta regions of Italy, for whom detailed clinical data, such as age at symptom onset, were available. We excluded patients with missing Revised ALS Functional Rating Scale (ALSFRS-R) feature values from the unsupervised and semi-supervised steps. We replicated our findings in an independent population-based cohort of patients who were diagnosed with ALS while living in the Emilia Romagna region of Italy. FINDINGS: Between Jan 1, 1995, and Dec 31, 2015, 2858 patients were entered in the discovery cohort. After excluding 497 (17%) patients with missing ALSFRS-R feature values, data for 42 clinical features across 2361 (83%) patients were available for the unsupervised and semi-supervised analysis. We found that semi-supervised machine learning produced the optimum clustering of the patients with ALS. These clusters roughly corresponded to the six clinical subtypes defined by the Chiò classification system (ie, bulbar, respiratory, flail arm, classical, pyramidal, and flail leg ALS). Between Jan 1, 2009, and March 1, 2018, 1097 patients were entered in the replication cohort. After excluding 108 (10%) patients with missing ALSFRS-R feature values, data for 42 clinical features across 989 patients were available for the unsupervised and semi-supervised analysis. All 1097 patients were included in the supervised analysis. The same clusters were identified in the replication cohort. By contrast, other ALS classification schemes, such as the El Escorial categories, Milano-Torino clinical staging, and King's clinical stages, did not adequately label the clusters. Supervised learning identified 11 clinical parameters that predicted ALS clinical subtypes with high accuracy (area under the curve 0·982 [95% CI 0·980-0·983]). INTERPRETATION: Our data-driven study provides insight into the ALS population substructure and confirms that the Chiò classification system successfully identifies ALS subtypes. Additional validation is required to determine the accuracy and clinical use of these algorithms in assigning clinical subtypes. Nevertheless, our algorithms offer a broad insight into the clinical heterogeneity of ALS and help to determine the actual subtypes of disease that exist within this fatal neurodegenerative syndrome. The systematic identification of ALS subtypes will improve clinical care and clinical trial design. FUNDING: US National Institute on Aging, US National Institutes of Health, Italian Ministry of Health, European Commission, University of Torino Rita Levi Montalcini Department of Neurosciences, Emilia Romagna Regional Health Authority, and Italian Ministry of Education, University, and Research. TRANSLATIONS: For the Italian and German translations of the abstract see Supplementary Materials section.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/epidemiologia , Análise por Conglomerados , Estudos de Coortes , Humanos , Aprendizado de Máquina , Estudos Retrospectivos , Estados Unidos
19.
Brain Commun ; 3(2): fcab095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34693284

RESUMO

Previous research using genome-wide association studies has identified variants that may contribute to lifetime risk of multiple neurodegenerative diseases. However, whether there are common mechanisms that link neurodegenerative diseases is uncertain. Here, we focus on one gene, GRN, encoding progranulin, and the potential mechanistic interplay between genetic risk, gene expression in the brain and inflammation across multiple common neurodegenerative diseases. We utilized genome-wide association studies, expression quantitative trait locus mapping and Bayesian colocalization analyses to evaluate potential causal and mechanistic inferences. We integrate various molecular data types from public resources to infer disease connectivity and shared mechanisms using a data-driven process. Expression quantitative trait locus analyses combined with genome-wide association studies identified significant functional associations between increasing genetic risk in the GRN region and decreased expression of the gene in Parkinson's, Alzheimer's and amyotrophic lateral sclerosis. Additionally, colocalization analyses show a connection between blood-based inflammatory biomarkers relating to platelets and GRN expression in the frontal cortex. GRN expression mediates neuroinflammation function related to multiple neurodegenerative diseases. This analysis suggests shared mechanisms for Parkinson's, Alzheimer's and amyotrophic lateral sclerosis.

20.
J Neurol Sci ; 429: 117615, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492572

RESUMO

BACKGROUND: Despite the established importance of identifying depression in Parkinson's disease, our understanding of the factors which place the Parkinson's disease patient at future risk of depression is limited. METHODS: Our sample consisted of 874 patients from two longitudinal cohorts, PPMI and PDBP, with median follow-up durations of 7 and 3 years respectively. Risk factors for depressive symptoms at baseline were determined using logistic regression. A Cox regression model was then used to identify baseline factors that predisposed the non-depressed patient to develop depressive symptoms that were sustained for at least one year, while adjusting for antidepressant use and cognitive impairment. Common predictors between the two cohorts were identified with a random-effects meta-analysis. RESULTS: We found in our analyses that the majority of baseline non-depressed patients would develop sustained depressive symptoms at least once during the course of the study. Probable REM sleep behavior disorder (pRBD), age, duration of diagnosis, impairment in daily activities, mild constipation, and antidepressant use were among the baseline risk factors for depression in either cohort. Our Cox regression model indicated that pRBD, impairment in daily activities, hyposmia, and mild constipation could serve as longitudinal predictors of sustained depressive symptoms. CONCLUSIONS: We identified several potential risk factors to aid physicians in the early detection of depression in Parkinson's disease patients. Our findings also underline the importance of adjusting for multiple covariates when analyzing risk factors for depression.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Estudos de Coortes , Depressão/epidemiologia , Depressão/etiologia , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/epidemiologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...