Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(28): 25279-25287, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483254

RESUMO

Insulin undergoes agglomeration with (subtle) changes in its biochemical environment, including acidity, application of heat, ionic imbalance, and exposure to hydrophobic surfaces. The therapeutic impact of such unwarranted insulin agglomeration is unclear and needs further evaluation. A systematic investigation was conducted on recombinant human insulin-with or without labeling with fluorescein isothiocyanate-while preparing insulin suspensions (0.125, 0.25, and 0.5 mg/mL) at pH 3. The suspensions were incubated (37 °C) and analyzed at different time points (t = 2, 4, 24, 48, and 72 h). Transmission electron microscopy and nanoparticle tracking analysis identified colloidally stable (zeta potential 15 ± 5 mV) spherical agglomerates of unlabeled insulin (100-500 nm). Circular dichroism established the preservation of insulin's secondary structure rich in α-helices despite exposure to an acidic environment (pH 3) for 72 h. Furthermore, fluorescence lifetime imaging microscopy illustrated an acidic core inside these spherical agglomerates, while the acidity gradually lessened toward the periphery. Some of these smaller agglomerates fused to form larger chunks with discrete zones of acidity. The data indicated a primary nucleation-driven mechanism of acid-induced insulin agglomeration under physiologically relevant conditions.

2.
ACS Pharmacol Transl Sci ; 5(11): 1050-1061, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36407954

RESUMO

Insulin is a therapeutically relevant molecule with use in treating diabetes patients. Unfortunately, it undergoes a range of untoward and often unpredictable physical transformations due to alterations in its biochemical environment, including pH, ionic strength, temperature, agitation, and exposure to hydrophobic surfaces. The transformations are prevalent in its physiologically active monomeric form, while the zinc cation-coordinated hexamer, although physiologically inactive, is stable and less susceptible to fibrillation. The resultant molecular reconfiguration, including unfolding, misfolding, and hydrophobic interactions, often results in agglomeration, amyloid fibrillogenesis, and precipitation. As a result, a part of the dose is lost, causing a compromised therapeutic efficacy. Besides, the amyloid fibrils form insoluble deposits, trigger immunologic reactions, and harbor cytotoxic potential. The physical transformations also hold back a successful translation of non-parenteral insulin formulations, in addition to challenges related to encapsulation, chemical modification, purification, storage, and dosing. This review revisits the mechanisms and challenges that drive such physical transformations in insulin, with an emphasis on the observed amyloid fibrillation, and presents a critique of the current amelioration strategies before prioritizing some future research objectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...