Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616677

RESUMO

The California Pipevine, Aristolochia californica Torr., is the only endemic California species within the cosmopolitan birthwort family Aristolochiaceae. It occurs as an understory vine in riparian and chaparral areas and in forest edges and windrows. The geographic range of this plant species almost entirely overlaps with that of its major specialized herbivore, the California Pipevine Swallowtail Butterfly Battus philenor hirsuta. While this species pair is a useful, ecologically well-understood system to study co-evolution, until recently, genomic resources for both have been lacking. Here, we report a new, chromosome-level assembly of A. californica as part of the California Conservation Genomics Project (CCGP). Following the sequencing and assembly strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin proximity sequencing technology to produce a de novo assembled genome. Our genome assembly, the first for any species in the genus, contains 531 scaffolds spanning 661 megabase (Mb) pairs, with a contig N50 of 6.53 Mb, a scaffold N50 of 42.2 Mb, and BUSCO complete score of 98%. In combination with the recently published B. philenor hirsuta reference genome assembly, the A. californica reference genome assembly will be a powerful tool for studying co-evolution in a rapidly changing California landscape.

2.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566597

RESUMO

Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into patterns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies (0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for Bell's sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-assemble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome evolution.


Assuntos
Elementos de DNA Transponíveis , Pardais , Animais , Elementos de DNA Transponíveis/genética , Pardais/genética , Análise de Sequência de DNA
3.
J Hered ; 115(3): 317-325, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38401156

RESUMO

The Yellow Warbler (Setophaga petechia) is a small songbird in the wood-warbler family (Parulidae) that exhibits phenotypic and ecological differences across a widespread distribution and is important to California's riparian habitat conservation. Here, we present a high-quality de novo genome assembly of a vouchered female Yellow Warbler from southern California. Using HiFi long-read and Omni-C proximity sequencing technologies, we generated a 1.22 Gb assembly including 687 scaffolds with a contig N50 of 6.80 Mb, scaffold N50 of 21.18 Mb, and a BUSCO completeness score of 96.0%. This highly contiguous genome assembly provides an essential resource for understanding the history of gene flow, divergence, and local adaptation in Yellow Warblers and can inform conservation management of this charismatic bird species.


Assuntos
Genoma , Aves Canoras , Animais , Aves Canoras/genética , Feminino , California , Fluxo Gênico
4.
J Hered ; 115(1): 139-148, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37712349

RESUMO

The Yuma myotis bat (Myotis yumanensis) is a small vespertilionid bat and one of 52 species of new world Myotis bats in the subgenus Pizonyx. While M. yumanensis populations currently appear relatively stable, it is one of 12 bat species known or suspected to be susceptible to white-nose syndrome, the fungal disease causing declines in bat populations across North America. Only two of these 12 species have genome resources available, which limits the ability of resource managers to use genomic techniques to track the responses of bat populations to white-nose syndrome generally. Here we present the first de novo genome assembly for Yuma myotis, generated as a part of the California Conservation Genomics Project. The M. yumanensis genome was generated using a combination of PacBio HiFi long reads and Omni-C chromatin-proximity sequencing technology. This high-quality genome is one of the most complete bat assemblies available, with a contig N50 of 28.03 Mb, scaffold N50 of 99.14 Mb, and BUSCO completeness score of 93.7%. The Yuma myotis genome provides a high-quality resource that will aid in comparative genomic and evolutionary studies, as well as inform conservation management related to white-nose syndrome.


Assuntos
Quirópteros , Animais , Quirópteros/genética , América do Norte , Genoma , Genômica , Evolução Biológica
5.
J Hered ; 115(1): 130-138, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37793045

RESUMO

The little pocket mouse, Perognathus longimembris, and its nine congeners are small heteromyid rodents found in arid and seasonally arid regions of Western North America. The genus is characterized by behavioral and physiological adaptations to dry and often harsh environments, including nocturnality, seasonal torpor, food caching, enhanced osmoregulation, and a well-developed sense of hearing. Here we present a genome assembly of Perognathus longimembris longimembris generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing as part of the California Conservation Genomics Project. The assembly has a length of 2.35 Gb, contig N50 of 11.6 Mb, scaffold N50 of 73.2 Mb, and includes 93.8% of the BUSCO Glires genes. Interspersed repetitive elements constitute 41.2% of the genome. A comparison with the highly endangered Pacific pocket mouse, P. l. pacificus, reveals broad synteny. These new resources will enable studies of local adaptation, genetic diversity, and conservation of threatened taxa.


Assuntos
Cromossomos , Genoma , Animais , Camundongos , Genômica , América do Norte
6.
J Hered ; 115(1): 120-129, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751380

RESUMO

Carpenter ants in the genus Camponotus are large, conspicuous ants that are abundant and ecologically influential in many terrestrial ecosystems. The bicolored carpenter ant, Camponotus vicinus Mayr, is distributed across a wide range of elevations and latitudes in western North America, where it is a prominent scavenger and predator. Here, we present a high-quality genome assembly of C. vicinus from a sample collected in Sonoma County, California, near the type locality of the species. This genome assembly consists of 38 scaffolds spanning 302.74 Mb, with contig N50 of 15.9 Mb, scaffold N50 of 19.9 Mb, and BUSCO completeness of 99.2%. This genome sequence will be a valuable resource for exploring the evolutionary ecology of C. vicinus and carpenter ants generally. It also provides an important tool for clarifying cryptic diversity within the C. vicinus species complex, a genetically diverse set of populations, some of which are quite localized and of conservation interest.


Assuntos
Formigas , Ecossistema , Animais , Simbiose , Formigas/genética , Filogenia
7.
J Hered ; 114(6): 707-714, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37740386

RESUMO

Acarospora socialis, the bright cobblestone lichen, is commonly found in southwestern North America. This charismatic yellow lichen is a species of key ecological significance as it is often a pioneer species in new environments. Despite their ecological importance virtually no research has been conducted on the genomics of A. socialis. To address this, we used long-read sequencing to generate the first high-quality draft genome of A. socialis. Lichen thallus tissue was collected from Pinkham Canyon in Joshua Tree National Park, California and deposited in the UC Riverside herbarium under accession #295874. The de novo assembly of the mycobiont partner of the lichen was generated from Pacific Biosciences HiFi long reads and Dovetail Omni-C chromatin capture data. After removing algal and bacterial contigs, the fungal genome was approximately 31.2 Mb consisting of 38 scaffolds with contig and scaffold N50 of 2.4 Mb. The BUSCO completeness score of the assembled genome was 97.5% using the Ascomycota gene set. Information on the genome of A. socialis is important for California conservation purposes given that this lichen is threatened in some places locally by wildfires due to climate change. This reference genome will be used for understanding the genetic diversity, population genomics, and comparative genomics of A. socialis species. Genomic resources for this species will support population and landscape genomics investigations, exploring the use of A. socialis as a bioindicator species for climate change, and in studies of adaptation by comparing populations that occur across aridity gradients in California.


Assuntos
Ascomicetos , Líquens , Líquens/genética , Anotação de Sequência Molecular , Genômica , Ascomicetos/genética
8.
J Hered ; 114(6): 669-680, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37589384

RESUMO

We announce the assembly of the first de novo reference genome for the California Scrub-Jay (Aphelocoma californica). The genus Aphelocoma comprises four currently recognized species including many locally adapted populations across Mesoamerica and North America. Intensive study of Aphelocoma has revealed novel insights into the evolutionary mechanisms driving diversification in natural systems. Additional insights into the evolutionary history of this group will require continued development of high-quality, publicly available genomic resources. We extracted high molecular weight genomic DNA from a female California Scrub-Jay from northern California and generated PacBio HiFi long-read data and Omni-C chromatin conformation capture data. We used these data to generate a de novo partially phased diploid genome assembly, consisting of two pseudo-haplotypes, and scaffolded them using inferred physical proximity information from the Omni-C data. The more complete pseudo-haplotype assembly (arbitrarily designated "Haplotype 1") is 1.35 Gb in total length, highly contiguous (contig N50 = 11.53 Mb), and highly complete (BUSCO completeness score = 97%), with comparable scaffold sizes to chromosome-level avian reference genomes (scaffold N50 = 66.14 Mb). Our California Scrub-Jay assembly is highly syntenic with the New Caledonian Crow reference genome despite ~10 million years of divergence, highlighting the temporal stability of the avian genome. This high-quality reference genome represents a leap forward in publicly available genomic resources for Aphelocoma, and the family Corvidae more broadly. Future work using Aphelocoma as a model for understanding the evolutionary forces generating and maintaining biodiversity across phylogenetic scales can now benefit from a highly contiguous, in-group reference genome.


Assuntos
Genoma , Passeriformes , Animais , Feminino , Filogenia , Cromossomos , California
9.
J Hered ; 114(6): 698-706, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37428819

RESUMO

The California Pipevine Swallowtail Butterfly, Battus philenor hirsuta, and its host plant, the California Pipevine or Dutchman's Pipe, Aristolochia californica Torr., are an important California endemic species pair. While this species pair is an ideal system to study co-evolution, genomic resources for both are lacking. Here, we report a new, chromosome-level assembly of B. philenor hirsuta as part of the California Conservation Genomics Project (CCGP). Following the sequencing and assembly strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin proximity sequencing technology to produce a de novo assembled genome. Our genome assembly, the first for any species in the genus, contains 109 scaffolds spanning 443 mega base (Mb) pairs, with a contig N50 of 14.6 Mb, a scaffold N50 of 15.2 Mb, and BUSCO complete score of 98.9%. In combination with the forthcoming A. californica reference genome, the B. philenor hirsuta genome will be a powerful tool for documenting landscape genomic diversity and plant-insect co-evolution in a rapidly changing California landscape.


Assuntos
Aristolochia , Borboletas , Animais , Borboletas/genética , Aristolochia/genética , Genoma , Genômica , Cromossomos
10.
J Hered ; 114(6): 681-689, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493092

RESUMO

Rattlesnakes play important roles in their ecosystems by regulating prey populations, are involved in complex coevolutionary dynamics with their prey, and exhibit a variety of unusual adaptations, including maternal care, heat-sensing pit organs, hinged fangs, and medically-significant venoms. The western rattlesnake (Crotalus oreganus) is one of the widest ranging rattlesnake species, with a distribution from British Columbia, where it is listed as threatened, to Baja California and east across the Great Basin to western Wyoming, Colorado and New Mexico. Here, we report a new reference genome assembly for one of six currently recognized subspecies, C. oreganus helleri, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomic sequencing strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 698 scaffolds spanning 1,564,812,557 base pairs, has a contig N50 of 64.7 Mb, a scaffold N50 of 110.8 Mb, and BUSCO complete score of 90.5%. This reference genome will be valuable for studies on the genomic basis of venom evolution and variation within Crotalus, in resolving the taxonomy of C. oreganus and its relatives, and for the conservation and management of rattlesnakes in general.


Assuntos
Crotalus , Ecossistema , Serpentes Peçonhentas , Animais , México , Crotalus/genética
11.
J Hered ; 114(5): 521-528, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37335574

RESUMO

Spiny lizards (genus Sceloporus) have long served as important systems for studies of behavior, thermal physiology, dietary ecology, vector biology, speciation, and biogeography. The western fence lizard, Sceloporus occidentalis, is found across most of the major biogeographical regions in the western United States and northern Baja California, Mexico, inhabiting a wide range of habitats, from grassland to chaparral to open woodlands. As small ectotherms, Sceloporus lizards are particularly vulnerable to climate change, and S. occidentalis has also become an important system for studying the impacts of land use change and urbanization on small vertebrates. Here, we report a new reference genome assembly for S. occidentalis, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomics strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 608 scaffolds spanning 2,856 Mb, has a contig N50 of 18.9 Mb, a scaffold N50 of 98.4 Mb, and BUSCO completeness score of 98.1% based on the tetrapod gene set. This reference genome will be valuable for understanding ecological and evolutionary dynamics in S. occidentalis, the species status of the California endemic island fence lizard (S. becki), and the spectacular radiation of Sceloporus lizards.


Assuntos
Genoma , Lagartos , Animais , México , Ecossistema , Genômica , Lagartos/genética
12.
J Hered ; 114(4): 395-403, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37042574

RESUMO

Climate-driven changes in hydrological regimes are of global importance and are particularly significant in riparian ecosystems. Riparian ecosystems in California provide refuge to many native and vulnerable species within a xeric landscape. California Tetragnatha spiders play a key role in riparian ecosystems, serving as a link between terrestrial and aquatic elements. Their tight reliance on water paired with the widespread distributions of many species make them ideal candidates to better understand the relative role of waterways versus geographic distance in shaping the population structure of riparian species. To assist in better understanding population structure, we constructed a reference genome assembly for Tetragnatha versicolor using long-read sequencing, scaffolded with proximity ligation Omni-C data. The near-chromosome-level assembly is comprised of 174 scaffolds spanning 1.06 Gb pairs, with a scaffold N50 of 64.1 Mb pairs and BUSCO completeness of 97.6%. This reference genome will facilitate future study of T. versicolor population structure associated with the rapidly changing environment of California.


Assuntos
Ecossistema , Aranhas , Animais , Genoma , Aranhas/química , Aranhas/genética
13.
J Hered ; 113(6): 699-705, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36074002

RESUMO

The sunburst anemone Anthopleura sola is an abundant species inhabiting the intertidal zone of coastal California. Historically, this species has extended from Baja California, Mexico to as far north as Monterey Bay, CA. However, recently the geographic range of this species has expanded to Bodega Bay, CA, possibly as far north as Salt Point, CA. This species also forms symbiotic partnerships with the dinoflagellate Breviolum muscatinei, a member of the family Symbiodiniaceae. These partnerships are analogous to those formed between tropical corals and dinoflagellate symbionts, making A. sola an excellent model system to explore how hosts will (co)evolve with novel symbiont populations they encounter as they expand northward. This assembly will serve as the foundation for identifying the population genomic patterns associated with range expansions, and will facilitate future work investigating how hosts and their symbiont partners will evolve to interact with one another as geographic ranges shift due to climate change.


Assuntos
Anemone , Dinoflagellida , Anêmonas-do-Mar , Animais , México , Anêmonas-do-Mar/genética , Dinoflagellida/genética , Simbiose
14.
J Hered ; 113(6): 641-648, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36056886

RESUMO

The rubber boa, Charina bottae is a semi-fossorial, cold-temperature adapted snake that ranges across the wetter and cooler ecoregions of the California Floristic Province. The rubber boa is 1 of 2 species in the family Boidae native to California and currently has 2 recognized subspecies, the Northern rubber boa C. bottae bottae and the Southern rubber boa C. bottae umbratica. Recent genomic work on C. bottae indicates that these 2 subspecies are collectively composed of 4 divergent lineages that separated during the late Miocene. Analysis of habitat suitability indicates that C. bottae umbratica montane sky-island populations from southern California will lose the majority of their habit over the next 70 yr, and is listed as Threatened under the California Endangered Species Act. Here, we report a new, chromosome-level assembly of C. bottae bottae as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genome strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises 289 scaffolds covering 1,804,944,895 bp, has a contig N50 of 37.3 Mb, a scaffold N50 of 97 Mb, and BUSCO completeness score of 96.3%, and represents the first reference genome for the Boidae snake family. This genome will enable studies of genetic differentiation and connectivity among C. bottae bottae and C. bottae umbratica populations across California and help manage locally endemic lineages as they confront challenges from human-induced climate warming, droughts, and wildfires across California.


Assuntos
Boidae , Animais , Humanos , Boidae/genética , Borracha , Genoma , Espécies em Perigo de Extinção , Cromossomos
15.
J Hered ; 113(6): 712-721, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36107789

RESUMO

Sandblossoms, Linanthus parryae is a widespread annual plant species found in washes and sandy open habitats across the Mojave Desert and Eastern Sierra Nevada of California. Studies in this species have played a central role in evolutionary biology, serving as the first test cases of the shifting balance theory of evolution, models of isolation by distance, and metrics to describe the genetic structure of natural populations. Despite the importance of L. parryae in the development of landscape genetics and phylogeography, there are no genomic resources available for the species. Through the California Conservation Genomics Project, we assembled the first genome in the genus Linanthus. Using PacBio HiFi long reads and Hi-C chromatin conformation capture, we assembled 123 scaffolds spanning 1.51 Gb of the 1.96 Gb estimated genome, with a contig N50 of 18.7 Mb and a scaffold N50 of 124.8 Mb. This assembly, with a BUSCO completeness score of 88.7%, will allow us to revisit foundational ideas central to our understanding of how evolutionary forces operate in a geographic landscape. In addition, it will be a new resource to uncover adaptations to arid environments in the fragile desert habitat threatened by urban and solar farm development, climate change, and off-road vehicles.


Assuntos
Adaptação Fisiológica , Genoma , Genômica , Cromossomos
16.
J Hered ; 113(6): 689-698, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044245

RESUMO

Efforts to protect the ecologically and economically significant California Current Ecosystem from global change will greatly benefit from data about patterns of local adaptation and population connectivity. To facilitate that work, we present a reference-quality genome for the giant pink sea star, Pisaster brevispinus, a species of ecological importance along the Pacific west coast of North America that has been heavily impacted by environmental change and disease. We used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly of 550 Mb in length. The assembly contains 127 scaffolds with a contig N50 of 4.6 Mb and a scaffold N50 of 21.4 Mb; the BUSCO completeness score is 98.70%. The P. brevispinus genome assembly is comparable to the genome of the congener species P. ochraceus in size and completeness. Both Pisaster assemblies are consistent with previously published karyotyping results showing sea star genomes are organized into 22 autosomes. The reference genome for P. brevispinus is an important first step toward the goal of producing a comprehensive, population genomics view of ecological and evolutionary processes along the California coast. This resource will help scientists, managers, and policy makers in their task of understanding and protecting critical coastal regions from the impacts of global change.


Assuntos
Ecossistema , Estrelas-do-Mar , Animais , Estrelas-do-Mar/genética , Cromossomos/genética , Genoma , América do Norte
17.
J Hered ; 113(6): 681-688, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35947871

RESUMO

The California ribbed mussel, Mytilus californianus, is an ecosystem engineer crucial for the survival of many marine species inhabiting the intertidal zone of California. Here, we describe the first reference genome for M. californianus and compare it to previously published genomes from three other Mytilus species: M. edulis, M. coruscus, and M. galloprovincialis. The M. californianus reference genome is 1.65 Gb in length, with N50 sequence length of 118 Mb, and an estimated 86.0% complete single copy genes. Compared with the other three Mytilus species, the M. californianus genome assembly is the longest, has the highest N50 value, and the highest percentage complete single copy genes. This high-quality genome assembly provides a foundation for population genetic analyses that will give insight into future conservation work along the coast of California.


Assuntos
Mytilus , Animais , Mytilus/genética , Ecossistema , California
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...