Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 25(11): 1989-1993, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36912487

RESUMO

Unprotected sugars are selectively acetylated simply by stirring in aqueous solution in the presence of acetic anhydride and a weak base such as sodium carbonate. The reaction is selective for acetylation of the anomeric hydroxyl group of mannose, 2-acetamido, and 2-deoxy sugars and can be performed on a large scale. Competitive intramolecular migration of the 1-O-acetate to the 2-hydroxyl group when these two substituents are cis causes over-reaction and the formation of product mixtures.

2.
Chemistry ; 29(4): e202203252, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36265126

RESUMO

ß-Cyclodextrin (ß-CD) and derivatives are approved therapeutics in >30 clinical settings. ß-CDs have also shown promise as therapeutics for treatment of some lysosomal storage disorders, such as Niemann-Pick disease type C, and other disease states which involve metabolite accumulation in the lysosome. In these cases, ß-CD activity relies on transport to the lysosome, wherein it can bind hydrophobic substrate and effect extraction. The post-translational attachment of N-glycans terminated in mannose-6-phosphate (M6P) residues is the predominant method by which lysosomal enzymes are targeted to the lysosome. In this work we covalently attach a synthetic biantennary bis-M6P-terminated N-glycan to ß-CD and study the effect of the added glycans in a mammalian cell line. The formation of a host guest complex with a Cy5 fluorophore allows study of both cellular internalisation and transport to the lysosome by fluorescence microscopy. Results indicate that the rates of both internalisation and lysosomal transport are increased by the attachment of M6P-glycans to ß-CD, indicating that M6P-glycan conjugation may improve the therapeutic effectiveness of ß-CD for the treatment of disorders involving hydrophobic metabolite accumulation in the lysosome.


Assuntos
beta-Ciclodextrinas , Animais , beta-Ciclodextrinas/farmacologia , Linhagem Celular , Transporte Biológico , Processamento de Proteína Pós-Traducional , Lisossomos/metabolismo , Mamíferos
3.
Chem Sci ; 13(14): 4122-4130, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35440979

RESUMO

Unprotected 2-acetamido sugars may be directly converted into their oxazolines using 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and a suitable base, in aqueous solution. Freeze drying and acid catalysed reaction with an alcohol as solvent produces the corresponding 1,2-trans-glycosides in good yield. Alternatively, dissolution in an aprotic solvent system and acidic activation in the presence of an excess of an unprotected glycoside as a glycosyl acceptor, results in the stereoselective formation of the corresponding 1,2-trans linked disaccharides without any protecting group manipulations. Reactions using aryl glycosides as acceptors are completely regioselective, producing only the (1→6)-linked disaccharides.

5.
Carbohydr Res ; 510: 108445, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34607125

RESUMO

The synthesis of analogues of natural enzyme substrates can be used to help deduce enzymatic mechanisms. N-Acetylmannosamine-6-phosphate 2-epimerase is an enzyme in the bacterial sialic acid catabolic pathway. To investigate whether the mechanism of this enzyme involves a re-protonation mechanism by the same neighbouring lysine that performed the deprotonation or a unique substrate-assisted proton displacement mechanism involving the substrate C5 hydroxyl, the syntheses of two analogues of the natural substrate, N-acetylmannosamine-6-phosphate, are described. In these novel analogues, the C5 hydroxyl has been replaced with a proton and a methyl ether respectively. As recently reported, Staphylococcus aureus N-acetylmannosamine-6-phosphate 2-epimerase was co-crystallized with these two compounds. The 5-deoxy variant bound to the enzyme active site in a different orientation to the natural substrate, while the 5-methoxy variant did not bind, adding to the evidence that this enzyme uses a substrate-assisted proton displacement mechanism. This mechanistic information may help in the design of potential antibacterial drug candidates.


Assuntos
Proteínas de Bactérias/metabolismo , Carboidratos Epimerases/metabolismo , Hexosaminas/biossíntese , Fosfatos Açúcares/biossíntese , Proteínas de Bactérias/química , Configuração de Carboidratos , Carboidratos Epimerases/química , Hexosaminas/química , Staphylococcus aureus/enzimologia , Fosfatos Açúcares/química
6.
Biochim Biophys Acta Gen Subj ; 1865(12): 130013, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34534644

RESUMO

BACKGROUND: Lipid hydroperoxides decompose to reactive aldehydes, such as acrolein. Measurement of oxidative stress markers in the clinic could improve risk stratification for patients. METHODS: To aid the development of diagnostic oxidative stress markers, we defined the acrolein modifications of haemoglobin using mass spectrometry. RESULTS: Acrolein modifications have little effect on the secondary structure of haemoglobin. They do not disrupt the quaternary structure, but instead promote crosslinked octamers. For acrolein modified haemoglobin the response to O2 binding is altered such that cooperativity is lost. Mass spectrometry experiments at a 1:1 acrolein:haemoglobin molar ratio demonstrate that the α-chain quickly forms an aza-Michael adduct (+56 Da), which then forms a more stable adduct, Nε-(3-methylpyridinium)lysine (MP-lysine, +76 Da) over 7 days. The ß-chain remains relatively unchanged over the duration of the 7 days and the aza-Michael adduct is dominant. At 2:1 and 5:1 molar ratios the α-chain was consistently modified at K7, H20, H50, and the ß-chain at C93 and H97 with the aza-Michael adduct. Beyond 5 h, an MP-adduct (+76 Da) was located predominantly at K7 of the α-chain, while an FDP-adduct (+94 Da) was observed at K95 of the ß-chain. CONCLUSIONS: We have generated qualitative evidence identifying the acrolein target sites on haemoglobin, a potential oxidative stress marker that is easily measured in circulation. GENERAL SIGNIFICANCE: We provide data for the community to develop targeted mass spectrometric or immunometric assays for acrolein modified haemoglobin to further validate the potential of haemoglobin as an oxidative stress marker in patients .


Assuntos
Acroleína , Aldeídos , Peroxidação de Lipídeos
7.
J Biol Chem ; 297(4): 101113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437902

RESUMO

There are five known general catalytic mechanisms used by enzymes to catalyze carbohydrate epimerization. The amino sugar epimerase N-acetylmannosamine-6-phosphate 2-epimerase (NanE) has been proposed to use a deprotonation-reprotonation mechanism, with an essential catalytic lysine required for both steps. However, the structural determinants of this mechanism are not clearly established. We characterized NanE from Staphylococcus aureus using a new coupled assay to monitor NanE catalysis in real time and found that it has kinetic constants comparable with other species. The crystal structure of NanE from Staphylococcus aureus, which comprises a triosephosphate isomerase barrel fold with an unusual dimeric architecture, was solved with both natural and modified substrates. Using these substrate-bound structures, we identified the following active-site residues lining the cleft at the C-terminal end of the ß-strands: Gln11, Arg40, Lys63, Asp124, Glu180, and Arg208, which were individually substituted and assessed in relation to the mechanism. From this, we re-evaluated the central role of Glu180 in this mechanism alongside the catalytic lysine. We observed that the substrate is bound in a conformation that ideally positions the C5 hydroxyl group to be activated by Glu180 and donate a proton to the C2 carbon. Taken together, we propose that NanE uses a novel substrate-assisted proton displacement mechanism to invert the C2 stereocenter of N-acetylmannosamine-6-phosphate. Our data and mechanistic interpretation may be useful in the development of inhibitors of this enzyme or in enzyme engineering to produce biocatalysts capable of changing the stereochemistry of molecules that are not amenable to synthetic methods.


Assuntos
Proteínas de Bactérias/química , Carboidratos Epimerases/química , Hexosaminas/química , Staphylococcus aureus/enzimologia , Fosfatos Açúcares/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , Catálise , Hexosaminas/genética , Hexosaminas/metabolismo , Mutação de Sentido Incorreto , Conformação Proteica em Folha beta , Domínios Proteicos , Staphylococcus aureus/genética , Fosfatos Açúcares/genética , Fosfatos Açúcares/metabolismo
8.
Carbohydr Res ; 499: 108197, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33256953

RESUMO

2-Chloro-1,3-dimethylimidazolinium chloride (DMC, herein also referred to as Shoda's reagent) and its derivatives are useful for numerous synthetic transformations in which the anomeric centre of unprotected reducing sugars is selectively activated in aqueous solution. As such unprotected sugars can undergo anomeric substitution with a range of added nucleophiles, providing highly efficient routes to a range of glycosides and glycoconjugates without the need for traditional protecting group manipulations. This mini-review summarizes the development of DMC and some of its derivatives/analogues, and highlights recent applications for protecting group-free synthesis.


Assuntos
Carboidratos/química , Estrutura Molecular
10.
Org Biomol Chem ; 18(37): 7355-7365, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32915177

RESUMO

Activation of reducing sugars in aqueous solution using 2-chloro-1,3-dimethylimidazolinium chloride (DMC) and triethylamine in the presence of para-nitrophenol allows direct stereoselective conversion to the corresponding 1,2-trans para-nitrophenyl glycosides without the need for any protecting groups. The reaction is applicable to sulfated and phosphorylated sugars, but not to ketoses or uronic acids or their derivatives. When applied to other phenols the product yield was found to depend on the pKa of the added phenol, and the process was less widely applicable to 2-acetamido sugars. For 2-acetamido substrates an alternative procedure in which the glycosyl oxazoline was pre-formed, the reaction mixture freeze-dried, and the crude product then reacted with an added phenol in a polar aprotic solvent system with microwave irradiation proved to be a useful simplification.

11.
Org Lett ; 22(17): 6863-6867, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32830985

RESUMO

Interferon-γ (IFN-γ) is a glycoprotein that is responsible for orchestrating numerous critical immune induction and modulation processes and is used clinically for the treatment of a number of diseases. Herein, we describe the total chemical synthesis of homogeneously glycosylated variants of human IFN-γ using a tandem diselenide-selenoester ligation-deselenization strategy in the C- to N-terminal direction. The synthetic glycoproteins were successfully folded, and the structures and antiviral functions were assessed.


Assuntos
Antivirais/farmacologia , Glicoproteínas/química , Interferon gama/síntese química , Antivirais/química , Glicosilação , Humanos , Interferon gama/química , Estrutura Molecular
12.
Org Lett ; 22(6): 2490-2493, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32159967

RESUMO

Reducing sugars may be directly converted into the corresponding para-nitrophenyl (pNP) glycosides using 2-chloro-1,3-dimethylimidazolinium chloride (DMC), para-nitrophenol, and a suitable base in aqueous solution. The reaction is stereoselective for sugars with either a hydroxyl or an acetamido group at position 2, yielding the 1,2-trans pNP glycosides. A judicious choice of base allows extension to di- and oligosaccharide substrates, including a complex N-glycan oligosaccharide isolated from natural sources, without the requirement of any protecting group manipulations.

13.
Curr Opin Chem Biol ; 53: 9-15, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31202888

RESUMO

The majority of the world's best-selling biotherapeutics are glycoproteins. However their production using cellular expression systems invariably produces inseparable mixtures of materials which differ in their attached carbohydrates. As in many cases correct carbohydrate structure is vital for in vivo efficacy, the development of methods for the production of glycoproteins in homogeneous form has become a significant scientific objective. Here a brief overview of recent progress in the production of homogeneous glycoproteins, including monoclonal antibodies, will be discussed, centring on the use of endo-ß-N-acetylglucosaminidase (ENGase) enzymes for protein glycoengineering.


Assuntos
Glicoproteínas/biossíntese , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/uso terapêutico , Glicoproteínas/genética , Glicoproteínas/uso terapêutico , Engenharia de Proteínas
14.
Carbohydr Res ; 477: 11-19, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30933786

RESUMO

Enzymatic degradation of locust bean gum provides a Manß(1 → 4)Man disaccharide, which may be converted into the core Manß(1 → 4)GlcNAc disaccharide unit of all N-glycans via conversion to a 2-iodo-glycosyl azide, and Lafont rearrangement. The Manß(1 → 4)GlcNAc disaccharide may be used as a key intermediate for elaboration into more complex N-glycan structures providing a route to N-glycan oxazolines as donor substrates for ENGase enzymes that is considerably shorter than those reported previously.


Assuntos
Galactanos/metabolismo , Mananas/metabolismo , Oxazóis/metabolismo , Gomas Vegetais/metabolismo , Poligalacturonase/metabolismo , Polissacarídeos/metabolismo , Configuração de Carboidratos , Galactanos/química , Mananas/química , Oxazóis/química , Gomas Vegetais/química , Polissacarídeos/química
15.
ChemistryOpen ; 8(2): 188-189, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30740293

RESUMO

Antony J. Fairbanks is a Professor in the Department of Chemistry at the University of Canterbury in New Zealand. The research of his group focuses on the broad areas of organic synthesis, particularly applied to carbohydrates. He currently serves as an active Editorial Board member for ChemistryOpen.

16.
Beilstein J Org Chem ; 14: 416-429, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520306

RESUMO

N-Glycan oxazolines have found widespread use as activated donor substrates for endo-ß-N-acetylglucosaminidase (ENGase) enzymes, an important application that has correspondingly stimulated interest in their production, both by total synthesis and by semi-synthesis using oligosaccharides isolated from natural sources. Amongst the many synthetic approaches reported, the majority rely on the fabrication (either by total synthesis, or semi-synthesis from locust bean gum) of a key Manß(1-4)GlcNAc disaccharide, which can then be elaborated at the 3- and 6-positions of the mannose unit using standard glycosylation chemistry. Early approaches subsequently relied on the Lewis acid catalysed conversion of peracetylated N-glycan oligosaccharides produced in this manner into their corresponding oxazolines, followed by global deprotection. However, a key breakthrough in the field has been the development by Shoda of 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and related reagents, which can direct convert an oligosaccharide with a 2-acetamido sugar at the reducing terminus directly into the corresponding oxazoline in water. Therefore, oxazoline formation can now be achieved in water as the final step of any synthetic sequence, obviating the need for any further protecting group manipulations, and simplifying synthetic strategies. As an alternative to total synthesis, significant quantities of several structurally complicated N-glycans can be isolated from natural sources, such as egg yolks and soy bean flour. Enzymatic transformations of these materials, in concert with DMC-mediated oxazoline formation as a final step, allow access to a selection of N-glycan oxazoline structures both in larger quantities and in a more expedient fashion than is achievable by total synthesis.

17.
Beilstein J Org Chem ; 14: 11-24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29379576

RESUMO

Glycoscience, despite its myriad of challenges, promises to unravel the causes of, potential new detection methods for, and novel therapeutic strategies against, many disease states. In the last two decades, glyco-gold nanoparticles have emerged as one of several potential new tools for glycoscientists. Glyco-gold nanoparticles consist of the unique structural combination of a gold nanoparticle core and an outer-shell comprising multivalent presentation of carbohydrates. The combination of the distinctive physicochemical properties of the gold core and the biological function/activity of the carbohydrates makes glyco-gold nanoparticles a valuable tool in glycoscience. In this review we present recent advances made in the use of one type of click chemistry, namely the azide-alkyne Huisgen cycloaddition, for the functionalization of gold nanoparticles and their conversion to glyco-gold nanoparticles.

18.
Carbohydr Res ; 457: 32-40, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348046

RESUMO

The recently discovered enzyme Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt), which catalyses the phosphorylation of deoxythymidine monophosphate (dTMP) to give deoxythymidine diphosphate (dTDP), is indispensable for the growth and survival of M. tuberculosis as it plays an essential role in DNA synthesis. Inhibition of TMPKmt is an attractive avenue for the development of novel anti-tuberculosis agents. Based on the premise that sulfamide may be a suitable isostere of phosphate, deoxythymidine analogues comprising various substituted sulfamides at C5' were modelled in silico into the active site of TMPKmt (PDB accession code: 1N5K) using induced-fit docking methods. A selection of modelled compounds was synthesized, and their activity as inhibitors of TMPKmt was evaluated. Three compounds showed competitive inhibition of TMPKmt in the micromolar range (10-50 µM). Compounds were tested in vitro for anti-mycobacterial activity against M. smegmatis: three compounds showed weak anti-mycobacterial activity (MIC 250 µg/mL).


Assuntos
Antituberculosos/química , Timidina/química , Antituberculosos/farmacologia , Parede Celular/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Timidina/farmacologia
19.
Chem Commun (Camb) ; 53(60): 8459-8462, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28702630

RESUMO

Advanced lipid peroxidation end-products (ALEs) accumulate with ageing and oxidative stress-related diseases. Despite their potential therapeutic value, there are no suitably protected ALE building blocks reported in the literature to enable their site-specific incorporation into synthetic peptides. The synthesis of an Fmoc-protected ALE building block, N∈-(3-methylpyridinium)lysine (MP-lysine) and its incorporation into collagen model peptides is reported.


Assuntos
Materiais Biomiméticos/química , Colágeno/química , Produtos Finais de Glicação Avançada/química , Peroxidação de Lipídeos , Peptídeos/química
20.
Chem Soc Rev ; 46(16): 5128-5146, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28681051

RESUMO

The endo-ß-N-acetylglucosaminidases (ENGases) are an enzyme class (EC 3.2.1.96) produced by a range of organisms, ranging from bacteria, through fungi, to higher order species, including humans, comprising two-sub families of glycosidases which all cleave the chitobiose core of N-linked glycans. Synthetic applications of these enzymes, i.e. to catalyse the reverse of their natural hydrolytic mode of action, allow the attachment of N-glycans to a wide variety of substrates which contain an N-acetylglucosamine (GlcNAc) residue to act as an 'acceptor' handle. The use of N-glycan oxazolines, high energy intermediates on the hydrolytic pathway, as activated donors allows their high yielding attachment to almost any amino acid, peptide or protein that contains a GlcNAc residue as an acceptor. The synthetic effectiveness of these biocatalysts has been significantly increased by the production of mutant glycosynthases; enzymes which can still catalyse synthetic processes using oxazolines as donors, but which do not hydrolyse the reaction products. ENGase biocatalysts are now finding burgeoning application for the production of biologically active glycopeptides and glycoproteins, including therapeutic monoclonal antibodies (mAbs) for which the oligosaccharides have been remodelled to optimise effector functions.


Assuntos
Glicopeptídeos/biossíntese , Glicoproteínas/biossíntese , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/metabolismo , Biocatálise , Configuração de Carboidratos , Glicopeptídeos/química , Glicoproteínas/química , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA