Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Cell Rep Methods ; 2(8): 100274, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046624

RESUMO

Cellular barcoding techniques are powerful tools to understand microbial pathogenesis. However, barcoding strategies have not been broadly applied to protozoan parasites, which have unique genomic structures and virulence strategies compared with viral and bacterial pathogens. Here, we present a CRISPR-based method to barcode protozoa, which we successfully apply to Toxoplasma gondii and Trypanosoma brucei. Using libraries of barcoded T. gondii, we evaluate shifts in the population structure from acute to chronic infection of mice. Contrary to expectation, most barcodes were present in the brain one month post-intraperitoneal infection in both inbred CBA/J and outbred Swiss mice. Although parasite cyst number and barcode diversity declined over time, barcodes representing a minor fraction of the inoculum could become a dominant population in the brain by three months post-infection. These data establish a cellular barcoding approach for protozoa and evidence that the blood-brain barrier is not a major bottleneck to colonization by T. gondii.


Assuntos
Toxoplasma , Camundongos , Animais , Toxoplasma/genética , Proteínas de Protozoários/genética , Camundongos Endogâmicos CBA , Virulência , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA