Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 35(8): e9018, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33615572

RESUMO

RATIONALE: In recent years, the primary reference material (RM) for the VPDB scale, NBS19, has become unavailable, and the RM used for low-end scale-anchoring, LSVEC, was found unsuitable due a drift in the δ13 C value. Given these problems, new RMs aimed at realising the VPDB δ13 C scale with low uncertainty were produced. Establishing the consistency of the new RMs with the "old" RMs prompted our revision of the underlying principles of RM value assignments, and the VPDB δ13 C scale realisation and its long-term sustainability. METHODS: Analysis of major developments of the VPDB scale, a review of the contemporary requirements for RMs, and comparison with well-established measurement scales have been performed, with the aim of revising the VPDB δ13 C scale, principles of RM value assignments, and calibrator hierarchy. Requirements for scale-anchoring RMs with low uncertainty and measures to establish the scale sustainability have been formulated. RESULTS: The revised scale realisation is based on multiple reference points, well-defined calibration hierarchy and the use of well-understood methods for value assignment. The realisation scheme includes the new primary RM IAEA-603 and scale-anchoring RMs IAEA-610, IAEA-611 and IAEA-612, covering δ13 C from +2.46 to -36.7 ‰ VPDB, with uncertainties, including inhomogeneity and stability assessment, of less than 0.015 ‰. The values of these four RMs were assigned in a mutually consistent way; agreement between measurements made using this realisation with those made using the VPDB scale of 2006 has been demonstrated on NIST CO2 RMs 8562-8564. CONCLUSIONS: Multipoint-anchoring of the VPDB δ13 C scale provides several distinct "points" on the scale as means for cross-measurements to check the stability and viability of RMs and detect drift of values, if any. This ensures that the δ13 C scale is suitable for the most demanding applications, and provides options for developing further RMs with high accuracy inside a robust scale realisation scheme.

2.
Rapid Commun Mass Spectrom ; 35(7): e9014, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33270300

RESUMO

RATIONALE: LSVEC, the second anchor Reference Material (RM) for the VPDB δ13 C scale realisation, was introduced in 2006. In 2015, its δ13 C value was found to be drifting and, in 2017, its use as an RM for δ13 C was officially discontinued by IUPAC. New RMs of low uncertainty are needed. This paper describes the preparation and characterisation of IAEA-610, IAEA-611 and IAEA-612 (calcium carbonate, of chemical origin) which shall serve as a set of RMs aimed at anchoring the VPDB scale at negative δ13 C values. METHODS: The preparation and characterisation of IAEA-610, IAEA-611 and IAEA-612 were performed by addressing the contemporary technical requirements for RM production and characterisation (ISO Guide 35:2017). The three RMs were produced in large quantities, and the first batch was sealed into ampoules (0.5 g) to ensure the integrity of the RM during storage; additional batches were sealed for long-term storage. The most accurate method of CO2 preparation and stable isotope measurements was used, namely carbonate-H3 PO4 reaction under well-controlled conditions combined with well-tested stable isotope ratio mass spectrometry. RESULTS: The assigned values of δ13 C and associated uncertainties are based on a large number of analyses (~10 mg aliquots) performed at IAEA and address all the known uncertainty components. For aliquots down to ~100 µg, the δ13 C uncertainty is increased. The uncertainty components considered are as follows: (i) material homogeneity, (ii) value assignment against IAEA-603, (iii) potential storage effects, (iv) effect of the 17 O correction, and (v) mass spectrometer linearity and cross-contamination memory in the ion source. CONCLUSIONS: The new RMs IAEA-610, IAEA-611 and IAEA-612 have been characterised on the VPDB δ13 C scale in a mutually consistent way. The use of three RMs will allow a consistent realisation of the VPDB δ13 C scale with small uncertainty to be established, and to reach metrological compatibility of measurement results over several decades.

3.
Rapid Commun Mass Spectrom ; 34(20): e8867, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32567208

RESUMO

RATIONALE: NBS19 carbonate, a primary reference material (RM) for the Vienna Pee Dee Belemnite (VPDB) scale realisation introduced in 1987, was exhausted in 2009, and no primary RM was available for several years. This study describes the preparation and characterisation of a new RM, IAEA-603 (Ca-carbonate, calcite of marble origin), which shall serve as a new primary RM (replacement for NBS19) or primary calibrator aimed at the highest realisation of the VPDB scale for δ13 C and δ18 O values, including the VPDB-CO2 δ18 O scale. METHODS: IAEA-603 preparation and characterisation (value transfer) against NBS19 were performed by addressing the major modern technical requirements for the production and characterisation of RMs (ISO Guide 35). IAEA-603 was produced in a large quantity, and the first batch was sealed into ampoules (0.5 g) to ensure RM integrity during storage; four other batches were sealed for long-term storage. The most accurate method of CO2 preparation for isotope mass spectrometry was used, namely carbonate-H3 PO4 reaction under controlled conditions. RESULTS: The assigned values of δ13 C = +2.460 ± 0.010‰ and δ18 O = -2.370 ± 0.040‰ (k = 1) are based on a large number of analyses (~10 mg aliquots) performed at IAEA and address all the known uncertainty components. For aliquots down to 120 µg, the δ18 O uncertainty remains unchanged but shall be doubled for δ13 C. The uncertainty components considered are as follows: (a) material homogeneity (within and between the 5200 ampoules produced), (b) value assignment against NBS19, (c) storage effects and (d) effect of the 17 O correction. CONCLUSIONS: The new primary RM IAEA-603 replaces NBS19 in its use as the highest calibrator for the VPDB δ13 C and δ18 O scale, including the VPDB-CO2 δ18 O scale. The use of IAEA-603 will allow laboratories worldwide to establish consistent realisation of the scales for δ13 C and δ18 O values and metrological comparability of measurement results for decades. The VPDB scale definition based on NBS19 stays valid.

4.
Talanta ; 184: 73-86, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29674086

RESUMO

The manuscript explores some advantages and limitations of laser based optical spectroscopy, aimed at achieving robust, high-reproducibility 13C16O2 and 12C16O2 ratio determinations on the VPDB-CO2 δ13C scale by measuring the absorbance of line pairs of 13C16O2 and 12C16O2. In particular, the sensitivities of spectroscopic lines to both pressure (P) and temperature (T) are discussed. Based on the considerations and estimations presented, a level of reproducibility of the 13C16O2/12C16O2 ratio determinations may be achieved of about 10-6. Thus one may establish an optical spectroscopic measurement technique for robust, high-precision 13C16O2 and 12C16O2 ratio measurements aimed at very low uncertainty. (Notably, creating such an optical instrument and developing technical solutions is beyond the scope of this paper.) The total combined uncertainty will also include the uncertainty component(s) related to the accuracy of calibration on the VPDB-CO2 δ13C scale. Addressing high-accuracy calibrations is presently not straightforward - absolute numerical values of 13C/12C for the VPDB-CO2 scale are not well known. Traditional stable isotope mass-spectrometry uses calibrations vs CO2 evolved from the primary carbonate reference materials; which can hardly be used for calibrating commercial optical stable isotope analysers. In contrast to mass-spectrometry, the major advantage of the laser-based spectrometric technique detailed in this paper is its high robustness. Therefore one can introduce a new spectrometric δ13C characterisation method which, being once well-calibrated on the VPDB-CO2 scale, may not require any further (re-)calibrations. This can be used for characterisation of δ13C in CO2-in-air mixtures with high precision and also with high accuracy. If this technique can be realised with the estimated long-term reproducibility (order of 10-6), it could potentially serve as a more convenient Optical Transfer Standard (OTS), characterising large amounts of CO2 gas mixtures on the VPDB-CO2 δ13C scale without having to compare to carbonate-evolved CO2. Furthermore, if the OTS method proves to be successful, it might be considered for re-defining the VPDB-CO2 δ13C-scale as the ratio of selected CO2 spectroscopic absorbance lines measured at pre-defined T & P conditions. The approach can also be expanded to δ18O characterisation (using 16O12C18O and 16O12C16O absorbance lines) of CO2 gas mixtures and potentially to other isotope ratios of other gases.

5.
Appl Radiat Isot ; 124: 7-15, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28314164

RESUMO

An Excel calculation spreadsheet has been developed to estimate the uncertainty of measurement results in γ-ray spectrometry. It considers all relevant uncertainty components and calculates the combined standard uncertainty of the measurement result. The calculation spreadsheet has been validated using two independent open access software and is available for download free of charge at: https://nucleus.iaea.org/rpst/ReferenceProducts/Analytical_Methods/index.htm. It provides a simple and easy-to-use template for estimating the uncertainty of γ-ray spectrometry measurement results and supports the radioanalytical laboratories seeking accreditation for their measurements using γ-ray spectrometry.

6.
Talanta ; 130: 462-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25159436

RESUMO

Monte Carlo simulation of expert judgments on human errors in a chemical analysis was used for determination of distributions of the error quantification scores (scores of likelihood and severity, and scores of effectiveness of a laboratory quality system in prevention of the errors). The simulation was based on modeling of an expert behavior: confident, reasonably doubting and irresolute expert judgments were taken into account by means of different probability mass functions (pmfs). As a case study, 36 scenarios of human errors which may occur in elemental analysis of geological samples by ICP-MS were examined. Characteristics of the score distributions for three pmfs of an expert behavior were compared. Variability of the scores, as standard deviation of the simulated score values from the distribution mean, was used for assessment of the score robustness. A range of the score values, calculated directly from elicited data and simulated by a Monte Carlo method for different pmfs, was also discussed from the robustness point of view. It was shown that robustness of the scores, obtained in the case study, can be assessed as satisfactory for the quality risk management and improvement of a laboratory quality system against human errors.

7.
Appl Radiat Isot ; 66(11): 1582-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18513979

RESUMO

This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.


Assuntos
Algoritmos , Interpretação Estatística de Dados , Modelos Estatísticos , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Simulação por Computador , Itália , Doses de Radiação , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Manejo de Espécimes/métodos
8.
Appl Radiat Isot ; 66(11): 1588-91, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18511285

RESUMO

In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.


Assuntos
Interpretação Estatística de Dados , Monitoramento de Radiação/métodos , Monitoramento de Radiação/normas , Poluentes Radioativos do Solo/análise , Poluentes Radioativos do Solo/normas , Solo/normas , Itália , Doses de Radiação , Valores de Referência , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade , Manejo de Espécimes/métodos
9.
Chemosphere ; 70(5): 745-52, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17888487

RESUMO

In the frame of the international SOILSAMP project, funded and coordinated by the National Environmental Protection Agency of Italy (APAT), uncertainties due to field soil sampling were assessed. Three different sampling devices were applied in an agricultural area using the same sampling protocol. Cr, Sc and Zn mass fractions in the collected soil samples were measured by k(0)-instrumental neutron activation analysis (k(0)-INAA). For each element-device combination the experimental variograms were calculated using geostatistical tools. The variogram parameters were used to estimate the standard uncertainty arising from sampling. The sampling component represents the dominant contribution of the measurement uncertainty with a sampling uncertainty to measurement uncertainty ratio ranging between 0.6 and 0.9. The approach based on the use of variogram parameters leads to uncertainty values of the sampling component in agreement with those estimated by replicate sampling approach.


Assuntos
Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Agricultura , Calibragem , Cromo/análise , Monitoramento Ambiental/estatística & dados numéricos , Itália , Controle de Qualidade , Reprodutibilidade dos Testes , Escândio/análise , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Incerteza , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...