Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2400084121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968114

RESUMO

MXenes have demonstrated potential for various applications owing to their tunable surface chemistry and metallic conductivity. However, high temperatures can accelerate MXene film oxidation in air. Understanding the mechanisms of MXene oxidation at elevated temperatures, which is still limited, is critical in improving their thermal stability for high-temperature applications. Here, we demonstrate that Ti[Formula: see text]C[Formula: see text]T[Formula: see text] MXene monoflakes have exceptional thermal stability at temperatures up to 600[Formula: see text]C in air, while multiflakes readily oxidize in air at 300[Formula: see text]C. Density functional theory calculations indicate that confined water between Ti[Formula: see text]C[Formula: see text]T[Formula: see text] flakes has higher removal energy than surface water and can thus persist to higher temperatures, leading to oxidation. We demonstrate that the amount of confined water correlates with the degree of oxidation in stacked flakes. Confined water can be fully removed by vacuum annealing Ti[Formula: see text]C[Formula: see text]T[Formula: see text] films at 600[Formula: see text]C, resulting in substantial stability improvement in multiflake films (can withstand 600[Formula: see text]C in air). These findings provide fundamental insights into the kinetics of confined water and its role in Ti[Formula: see text]C[Formula: see text]T[Formula: see text] oxidation. This work enables the use of stable monoflake MXenes in high-temperature applications and provides guidelines for proper vacuum annealing of multiflake films to enhance their stability.

2.
Nat Mater ; 23(5): 688-694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38413812

RESUMO

Enabled by surface-mediated equilibration, physical vapour deposition can create high-density stable glasses comparable with liquid-quenched glasses aged for millions of years. Deposition is often performed at various rates and temperatures on rigid substrates to control the glass properties. Here we demonstrate that on soft, rubbery substrates, surface-mediated equilibration is enhanced up to 170 nm away from the interface, forming stable glasses with densities up to 2.5% higher than liquid-quenched glasses within 2.5 h of deposition. Gaining similar properties on rigid substrates would require 10 million times slower deposition, taking ~3,000 years. Controlling the modulus of the rubbery substrate provides control over the glass structure and density at constant deposition conditions. These results underscore the significance of substrate elasticity in manipulating the properties of the mobile surface layer and thus the glass structure and properties, allowing access to deeper states of the energy landscape without prohibitively slow deposition rates.

3.
Nano Lett ; 23(19): 8953-8959, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37737103

RESUMO

Kelvin probe force microscopy measures surface potential and delivers insights into nanoscale electronic properties, including work function, doping levels, and localized charges. Recently developed pulsed force Kelvin probe force microscopy (PF-KPFM) provides sub-10 nm spatial resolution under ambient conditions, but its original implementation is hampered by instrument complexity and limited operational speed. Here, we introduce a solution for overcoming these two limitations: a lock-in amplifier-based PF-KPFM. Our method involves phase-synchronized switching of a field effect transistor to mediate the Coulombic force between the probe and the sample. We validate its efficacy on two-dimensional material MXene and aged perovskite photovoltaic films. Lock-in-based PF-KPFM successfully identifies the contact potential difference (CPD) of stacked flakes and finds that the CPDs of monoflake MXene are different from those of their multiflake counterparts, which are otherwise similar in value. In perovskite films, we uncover electrical degradation that remains elusive with surface topography.

4.
Small Methods ; 7(10): e2300568, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454348

RESUMO

MXenes, a family of 2D transition-metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes' thermal stability can enable deeper insights into their structure-property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3 C2 Tx , Mo2 TiC2 Tx , and Ti2 CTx ) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near-IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3 C2 Tx and Ti2 CTx , respectively, have the highest and lowest thermal stability, indicating the role of transition-metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure-property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials.

5.
Small Methods ; 7(8): e2300030, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37150839

RESUMO

To advance the MXene field, it is crucial to optimize each step of the synthesis process and create a detailed, systematic guide for synthesizing high-quality MXene that can be consistently reproduced. In this study, a detailed guide is provided for an optimized synthesis of titanium carbide (Ti3 C2 Tx ) MXene using a mixture of hydrofluoric and hydrochloric acids for the selective etching of the stoichimetric-Ti3 AlC2 MAX phase and delamination of the etched multilayered Ti3 C2 Tx MXene using lithium chloride at 65 °C for 1 h with argon bubbling. The effect of different synthesis variables is investigated, including the stoichiometry of the mixed powders to synthesize Ti3 AlC2 , pre-etch impurity removal conditions, selective etching, storage, and drying of MXene multilayer powder, and the subsequent delamination conditions. The synthesis yield and the MXene film electrical conductivity are used as the two parameters to evaluate the MXene quality. Also the MXenes are characterized with scanning electron microscopy, x-ray diffraction, atomic force microscopy, and ellipsometry. The Ti3 C2 Tx film made via the optimized method shows electrical conductivity as high as ≈21,000 S/cm with a synthesis yield of up to 38 %. A detailed protocol is also provided for the Ti3 C2 Tx MXene synthesis as the supporting information for this study.

6.
Annu Rev Phys Chem ; 74: 361-389, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36750412

RESUMO

Surfaces mediate the formation of stable glasses (SGs) upon physical vapor deposition (PVD) for a wide range of glass formers. The thermodynamic and kinetic stability of SGs and their anisotropic packing structures are controlled through the deposition parameters (deposition temperature and rate) as well as the chemical structure and composition of the glass former. The resulting PVD glass properties can therefore be related to the structure and dynamics of the glass surface, which can have oriented packing, enhanced surface diffusion, and a lower glass transition temperature, and can facilitate an enhanced aging rate of the interfacial region. We review our current understanding of the details of this surface-mediated SG formation process and discuss key gaps in our knowledge of glass surface dynamics and their effect on this process.

7.
ACS Appl Mater Interfaces ; 15(1): 984-996, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36548441

RESUMO

A sonochemical-based hydrosilylation method was employed to covalently attach a rhenium tricarbonyl phenanthroline complex to silicon(111). fac-Re(5-(p-Styrene)-phen)(CO)3Cl (5-(p-styrene)-phen = 5-(4-vinylphenyl)-1,10-phenanthroline) was reacted with hydrogen-terminated silicon(111) in an ultrasonic bath to generate a hybrid photoelectrode. Subsequent reaction with 1-hexene enabled functionalization of remaining atop Si sites. Attenuated total reflectance-Fourier transform infrared spectroscopy confirms attachment of the organometallic complex to silicon without degradation of the organometallic core, supporting hydrosilylation as a strategy for installing coordination complexes that retain their molecular integrity. Detection of Re(I) and nitrogen by X-ray photoelectron spectroscopy (XPS) further support immobilization of fac-Re(5-(p-styrene)-phen)(CO)3Cl. Cyclic voltammetry and electrochemical impedance spectroscopy under white light illumination indicate that fac-Re(5-(p-styrene)-phen)(CO)3Cl undergoes two electron reductions. Mott-Schottky analysis indicates that the flat band potential is 239 mV more positive for p-Si(111) co-functionalized with both fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene than when functionalized with 1-hexene alone. XPS, ultraviolet photoelectron spectroscopy, and Mott-Schottky analysis show that functionalization with fac-Re(5-(p-styrene)-phen)(CO)3Cl and 1-hexene introduces a negative interfacial dipole, facilitating reductive photoelectrochemistry.

8.
J Chem Phys ; 156(24): 244703, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35778085

RESUMO

Stable glasses (SGs) are formed through surface-mediated equilibration (SME) during physical vapor deposition (PVD). Unlike intermolecular interactions, the role of intramolecular degrees of freedom in this process remains unexplored. Here, using experiments and coarse-grained molecular dynamics simulations, we demonstrate that varying dihedral rotation barriers of even a single bond, in otherwise isomeric molecules, can strongly influence the structure and stability of PVD glasses. These effects arise from variations in the degree of surface mobility, mobility gradients, and mobility anisotropy, at a given deposition temperature (Tdep). At high Tdep, flexible molecules have access to more configurations, which enhances the rate of SME, forming isotropic SGs. At low Tdep, stability is achieved by out of equilibrium aging of the surface layer. Here, the poor packing of rigid molecules enhances the rate of surface-mediated aging, producing stable glasses with layered structures in a broad range of Tdep. In contrast, the dynamics of flexible molecules couple more efficiently to the glass layers underneath, resulting in reduced mobility and weaker mobility gradients, producing unstable glasses. Independent of stability, the flattened shape of flexible molecules can also promote in-plane orientational order at low Tdep. These results indicate that small changes in intramolecular relaxation barriers can be used as an approach to independently tune the structure and mobility profiles of the surface layer and, thus, the stability and structure of PVD glasses.

9.
J Phys Chem Lett ; 13(15): 3360-3368, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35403428

RESUMO

The density, degree of molecular orientation, and molecular layering of vapor-deposited stable glasses (SGs) vary with substrate temperature (Tdep) below the glass-transition temperature (Tg). Density and orientation have been suggested to be factors influencing the mechanical properties of SGs. We perform nanoindentation on two molecules which differ by only a single substituent, allowing one molecule to adopt an in-plane orientation at low Tdep. The reduced elastic modulus and hardness of both molecules show similar Tdep dependences, with enhancements of 15-20% in reduced modulus and 30-45% in hardness at Tdep ≈ 0.8Tg, where the density of vapor-deposited films is enhanced by ∼1.4% compared to that of the liquid-quenched glass. At Tdep < 0.8Tg, one of the molecules produces highly unstable glasses with in-plane orientation. However, both systems show enhanced mechanics. Both the modulus and hardness correlate with the degree of layering, which is similar in both systems despite their variable stability. We suggest that nanoindentation performed normal to the film's surface is influenced by the tighter packing of the molecules in this direction.

10.
J Chem Phys ; 155(22): 224503, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34911316

RESUMO

We design and synthesize a set of homologous organic molecules by taking advantage of facile and tailorable Suzuki cross coupling reactions to produce triarylbenzene derivatives. By adjusting the number and the arrangement of conjugated rings, the identity of heteroatoms, lengths of fluorinated alkyl chains, and other interaction parameters, we create a library of glassformers with a wide range of properties. Measurements of the glass transition temperature (Tg) show a power-law relationship between Tg and molecular weight (MW), with of the molecules, with an exponent of 0.3 ± 0.1, for Tg values spanning a range of 300-450 K. The trends in indices of refraction and expansion coefficients indicate a general increase in the glass density with MW, consistent with the trends observed in Tg variations. A notable exception to these trends was observed with the addition of alkyl and fluorinated alkyl groups, which significantly reduced Tg and increased the dynamical fragility (which is otherwise insensitive to MW). This is an indication of reduced density and increased packing frustrations in these systems, which is also corroborated by the observations of the decreasing index of refraction with increasing length of these groups. These data were used to launch a new database for glassforming materials, glass.apps.sas.upenn.edu.

11.
ACS Appl Mater Interfaces ; 13(37): 44893-44903, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494810

RESUMO

Most research on polymer composites has focused on adding discrete inorganic nanofillers to a polymer matrix to impart properties not found in polymers alone. However, properties such as ion conductivity and mechanical reinforcement would be greatly improved if the composite exhibited an interconnected network of inorganic and polymer phases. Here, we fabricate bicontinuous polymer-infiltrated scaffold metal (PrISM) composites by infiltrating polymer into nanoporous gold (NPG) films. Polystyrene (PS) and poly(2-vinylpyridine) (P2VP) films are infiltrated into the ∼43 nm diameter NPG pores via capillary forces during thermal annealing above the polymer glass transition temperature (Tg). The infiltration process is characterized in situ using spectroscopic ellipsometry. PS and P2VP, which have different affinities for the metal scaffold, exhibit slower segmental dynamics compared to their bulk counterparts when confined within the nanopores, as measured through Tg. The more attractive P2VP shows a 20 °C increase in Tg relative to its bulk, while PS only shows a 6 °C increase at a comparable molecular weight. The infiltrated polymer, in turn, stabilizes the gold nanopores against temporal coarsening. The broad tunability of these polymer/metal hybrids represents a unique template for designing functional network composite structures with applications ranging from flexible electronics to fuel cell membranes.

12.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330828

RESUMO

When aged below the glass transition temperature, [Formula: see text], the density of a glass cannot exceed that of the metastable supercooled liquid (SCL) state, unless crystals are nucleated. The only exception is when another polyamorphic SCL state exists, with a density higher than that of the ordinary SCL. Experimentally, such polyamorphic states and their corresponding liquid-liquid phase transitions have only been observed in network-forming systems or those with polymorphic crystalline states. In otherwise simple liquids, such phase transitions have not been observed, either in aged or vapor-deposited stable glasses, even near the Kauzmann temperature. Here, we report that the density of thin vapor-deposited films of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) can exceed their corresponding SCL density by as much as 3.5% and can even exceed the crystal density under certain deposition conditions. We identify a previously unidentified high-density supercooled liquid (HD-SCL) phase with a liquid-liquid phase transition temperature ([Formula: see text]) ∼35 K below the nominal glass transition temperature of the ordinary SCL. The HD-SCL state is observed in glasses deposited in the thickness range of 25 to 55 nm, where thin films of the ordinary SCL have exceptionally enhanced surface mobility with large mobility gradients. The enhanced mobility enables vapor-deposited thin films to overcome kinetic barriers for relaxation and access the HD-SCL state. The HD-SCL state is only thermodynamically favored in thin films and transforms rapidly to the ordinary SCL when the vapor deposition is continued to form films with thicknesses more than 60 nm.

13.
Annu Rev Chem Biomol Eng ; 12: 411-437, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34097843

RESUMO

Polymer-infiltrated nanoparticle films (PINFs) are a new class of nanocomposites that offer synergistic properties and functionality derived from unusually high fractions of nanomaterials. Recently, two versatile techniques,capillary rise infiltration (CaRI) and solvent-driven infiltration of polymer (SIP), have been introduced that exploit capillary forces in films of densely packed nanoparticles. In CaRI, a highly loaded PINF is produced by thermally induced wicking of polymer melt into the nanoparticle packing pores. In SIP, exposure of a polymer-nanoparticle bilayer to solvent vapor atmosphere induces capillary condensation of solvent in the pores of nanoparticle packing, leading to infiltration of polymer into the solvent-filled pores. CaRI/SIP PINFs show superior properties compared with polymer nanocomposite films made using traditional methods, including superb mechanical properties, thermal stability, heat transfer, and optical properties. This review discusses fundamental aspects of the infiltration process and highlights potential applications in separations, structural coatings, and polymer upcycling-a process to convert polymer wastes into useful chemicals.


Assuntos
Nanocompostos , Nanopartículas , Ação Capilar , Fenômenos Mecânicos , Polímeros
14.
Nano Lett ; 21(12): 5386-5393, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34061548

RESUMO

Plasmonic structures confine electromagnetic energy at the nanoscale, resulting in local, inhomogeneous, controllable heating, but reading out the temperature using optical techniques poses a difficult challenge. Here, we report on the optical thermometry of individual gold nanorod trimers that exhibit multiple wavelength-dependent plasmon modes resulting in measurably different local temperature distributions. Specifically, we demonstrate how photothermal microscopy encodes different wavelength-dependent temperature profiles in the asymmetry of the photothermal image point spread function. These asymmetries are interpreted through companion numerical simulations to reveal how thermal gradients within the trimer can be controlled by exciting its hybridized plasmon modes. We also find that plasmon modes that are optically dark can be excited by focused laser beam illumination, providing another route to modify thermal profiles beyond wide-field illumination. Taken together these findings demonstrate an all-optical thermometry technique to actively create and measure nanoscale thermal gradients below the diffraction limit.


Assuntos
Nanotubos , Termometria , Diagnóstico por Imagem , Ouro , Temperatura
15.
Nano Lett ; 21(4): 1778-1784, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33555892

RESUMO

The effect of nanoporous confinement on the glass transition temperature (Tg) strongly depends on the type of porous media. Here, we study the molecular origins of this effect in a molecular glass, N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), highly confined in concave and convex geometries. When confined in controlled pore glass (CPG) with convex pores, TPD's vibrational spectra remained unchanged and two Tg's were observed, consistent with previous studies. In contrast, when confined in silica nanoparticle packings with concave pores, the vibrational peaks were shifted due to more planar conformations and Tg increased, as the pore size was decreased. The strong Tg increases in concave pores indicate significantly slower relaxation dynamics compared to CPG. Given TPD's weak interaction with silica, these effects are entropic in nature and are due to conformational changes at molecular level. The results highlight the role of intramolecular degrees of freedom in the glass transition, which have not been extensively explored.

16.
Proc Natl Acad Sci U S A ; 117(39): 24076-24081, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32934146

RESUMO

Enhanced surface mobility is critical in producing stable glasses during physical vapor deposition. In amorphous selenium (a-Se) both the structure and dynamics of the surface can be altered when exposed to above-bandgap light. Here we investigate the effect of light on the properties of vapor-deposited a-Se glasses at a range of substrate temperatures and deposition rates. We demonstrate that deposition both under white light illumination and in the dark results in thermally and kinetically stable glasses. Compared to glasses deposited in the dark, stable a-Se glasses formed under white light have reduced thermal stability, as measured by lower density change, but show significantly improved kinetic stability, measured as higher onset temperature for transformation. While light induces enhanced mobility that penetrates deep into the surface, resulting in lower density during vapor deposition, it also acts to form more networked structures at the surface, which results in a state that is kinetically more stable with larger optical birefringence. We demonstrate that the structure formed during deposition with light is a state that is not accessible through liquid quenching, aging, or vapor deposition in the dark, indicating the formation of a unique amorphous solid state.

17.
ACS Macro Lett ; 9(8): 1095-1101, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35653214

RESUMO

Understanding the kinetic pathways of self-assembly in block copolymers (BCPs) has been a long-standing challenge, mostly due to limitations of in situ monitoring techniques. Here, we demonstrate an approach that uses optical birefringence, determined by spectroscopic ellipsometry (SE), as a measure of domain formation in cylinder- and lamellae-forming BCP films. The rapid experimental acquisition time in SE (ca. 1 sec) enables monitoring of the assembly/disassembly kinetics of BCP films during solvent-vapor annealing (SVA). We demonstrate that upon SVA, BCP films form ordered domains that are stable in the swollen state, but disorder upon rapid drying. Surprisingly, the disassembly during drying strongly depends on the duration of solvent exposure in the swollen state, explaining previous observations of loss of order in SVA processes. SE thus allows for decoupling of BCP self-assembly and disordering that occurs during solvent annealing and solvent evaporation, which is difficult to probe using other, slower techniques.

18.
J Phys Chem B ; 123(49): 10376-10383, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31714085

RESUMO

Many amyloid-ß fibril preparations are highly polymorphic, and the conditions under which they are formed determine their morphology. This report describes the application of high-resolution atomic force microscopy (HR-AFM), combined with volume-per-length analysis, to define, identify, and quantify the structural components of polymorphic Aß fibril preparations. Volume-per-length analysis confirms that they are composed of discrete cross-ß filaments, and the analysis of HR-AFM images yields the number of striations in each fibril. Compared to mass-per-length analysis by electron microscopy, HR-AFM analysis yields narrower distributions, facilitating rapid and label-free quantitative morphological characterization of Aß fibril preparations.


Assuntos
Peptídeos beta-Amiloides/análise , Fragmentos de Peptídeos/análise , Microscopia de Força Atômica , Modelos Moleculares
19.
J Phys Chem B ; 123(32): 6990-6996, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31334647

RESUMO

Adsorbates growing a self-assembled layer on a solid-liquid interface can significantly change the effective interfacial energy at the solid surface. However, measuring the changes in the effective surface energy while these adsorbates accumulate is challenging, as static contact angle measurements can be affected by the motion and accumulation of these adsorbates at the droplet's boundary (coffee stain effects). In this report, we utilize a novel method that takes advantage of spin-induced dewetting to measure the change in the effective surface energy as the self-assembly progresses. We use a previously well-studied model system of self-assembled fibrils of amyloid-ß (Aß) peptides on the mica substrate to demonstrate the feasibility of this method. Using variations of terminal spin speeds and acceleration rates, we measure the terminal spin speed at which a wetting-dewetting transition (WDT) occurs on a surface that hosts self-assembled Aß12-28 fibrils. By comparing this speed with the WDT speed on the bare mica substrate, we can quantify the spreading coefficient and thus the effective change of the substrate's interfacial energy due to the adsorption of mobile peptides at various stages of the self-assembly. These measurements show that the surface becomes more hydrophilic as the self-assembly progresses and thus can explain previous observations that the self-assembly of this particular peptide system is self-limiting and stops before full surface coverage.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Fragmentos de Peptídeos/química , Molhabilidade , Silicatos de Alumínio , Humanos , Cinética , Microscopia de Força Atômica , Propriedades de Superfície
20.
J Phys Chem B ; 123(18): 4108-4117, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-30998844

RESUMO

Stable glasses are formed during physical vapor deposition (PVD), through the surface-mediated equilibration process. Understanding surface relaxation dynamics is important in understanding the details of this process. Direct measurements of the surface relaxation times in molecular glass systems are challenging. As such, surface diffusion measurements have been used in the past as a proxy for the surface relaxation process. In this study, we show that the absence of enhanced surface diffusion is not a reliable predictor of reduced ability to produce stable glasses. To demonstrate, we have prepared stable glasses (SGs) from two structurally similar organic molecules, 1,3-bis(1-naphthyl)-5-(2-naphthyl)benzene (TNB) and 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene (α,α-A), with similar density increase and improved kinetic stability as compared to their liquid-quenched (LQ) counterparts. The surface diffusion values of these glasses were measured both in the LQ and SG states below their glass transition temperatures ( Tgs) using gold nanorod probes. While TNB shows enhanced surface diffusion in both SG and LQ states, no significant surface Tg diffusion is observed on the surface of α,α-A within our experimental time scales. However, isothermal dewetting experiments on ultrathin films of both molecules below Tg indicate the existence of enhanced dynamics in ultrathin films for both molecules, indirectly showing the existence of an enhanced mobile surface layer. Both films produce stable glasses, which is another indication for the existence of the mobile surface layer. Our results suggest that lateral surface diffusion may not be a good proxy for enhanced surface relaxation dynamics required to produce stable glasses, and thus, other types of measurements to directly probe the surface relaxation times may be necessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA