RESUMO
BACKGROUND: Our goal was to identify genetic risk factors for cutaneous leishmaniasis (CL) caused by Leishmania braziliensis. METHODS: Genotyping 2066 CL cases and 2046 controls using Illumina HumanCoreExomeBeadChips provided data for 4 498 586 imputed single-nucleotide variants (SNVs). A genome-wide association study (GWAS) using linear mixed models took account of genetic diversity/ethnicity/admixture. Post-GWAS positional, expression quantitative trait locus (eQTL) and chromatin interaction mapping was performed in Functional Mapping and Annotation (FUMA). Transcriptional data were compared between lesions and normal skin, and cytokines measured using flow cytometry and Bioplex assay. RESULTS: Positional mapping identified 32 genomic loci associated with CL, none achieving genome-wide significance (P < 5 × 10-8). Lead SNVs at 23 loci occurred at protein coding or noncoding RNA genes, 15 with eQTLs for functionally relevant cells/tissues and/or showing differential expression in lesions. Of these, the 6 most plausible genetic risk loci were SERPINB10 (Pimputed_1000G = 2.67 × 10-6), CRLF3 (Pimputed_1000G = 5.12 × 10-6), STX7 (Pimputed_1000G = 6.06 × 10-6), KRT80 (Pimputed_1000G = 6.58 × 10-6), LAMP3 (Pimputed_1000G = 6.54 × 10-6), and IFNG-AS1 (Pimputed_1000G = 1.32 × 10-5). LAMP3 (Padjusted = 9.25 × 10-12; +6-fold), STX7 (Padjusted = 7.62 × 10-3; +1.3-fold), and CRLF3 (Padjusted = 9.19 × 10-9; +1.97-fold) were expressed more highly in CL biopsies compared to normal skin; KRT80 (Padjusted = 3.07 × 10-8; -3-fold) was lower. Multiple cis-eQTLs across SERPINB10 mapped to chromatin interaction regions of transcriptional/enhancer activity in neutrophils, monocytes, B cells, and hematopoietic stem cells. Those at IFNG-AS1 mapped to transcriptional/enhancer regions in T, natural killer, and B cells. The percentage of peripheral blood CD3+ T cells making antigen-specific interferon-γ differed significantly by IFNG-AS1 genotype. CONCLUSIONS: This first GWAS for CL identified multiple genetic risk loci including a novel lead to understanding CL pathogenesis through regulation of interferon-γ by IFNG antisense RNA 1.
Assuntos
Predisposição Genética para Doença , Leishmaniose Cutânea , Brasil/epidemiologia , Estudo de Associação Genômica Ampla , Humanos , Interferon gama , Queratinas Tipo II , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/genética , Proteínas de Membrana Lisossomal , Proteínas de Neoplasias , Polimorfismo de Nucleotídeo Único , Receptores de Citocinas , SerpinasRESUMO
Genetic risk factors contribute to asymptomatic versus symptomatic visceral leishmaniasis (VL) outcomes following infection with Leishmania infantum. We therefore carried out a family-based (n = 918 post-quality control fully genotyped and phenotyped individuals) candidate gene study for symptomatic VL or asymptomatic delayed-type hypersensitivity (DTH) skin test phenotypes in highly endemic neighborhoods of northeast Brazil. A total of 248 SNPs were genotyped in 42 genes selected as candidates on the basis of prior genetic, immunological, and transcriptional profiling studies. The most significant association with the VL phenotype was with SNP rs6785358 (P = 5.7e-04; pcorrected = 0.026) 3.8 kb upstream of TGFBR2, the gene encoding the type 2 receptor for transforming growth factor beta (TGFß). A second inhibitory member of the TGBß superfamily signaling pathway, SMAD7, was associated with the DTH phenotype (SNP rs7238442: P = 0.001; pcorrected = 0.051). The most significant association for the DTH phenotype was with SNP rs10800309 (P = -8.4e-06; pcorrected = 3.9e-04) situated 3.1 kb upstream of FCGR2A, the gene encoding the low-affinity IIa receptor for the Fc fragment of IgG. Overall, our results imply a role for IgG-mediated inflammation in determining DTH associated with asymptomatic infection and contribute to growing evidence that the TGFß pathway is important in the immunopathogenesis of VL.
Assuntos
Leishmania infantum , Leishmaniose Visceral/genética , Proteínas Serina-Treonina Quinases/genética , Receptores de IgG/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Adolescente , Infecções Assintomáticas , Brasil , Criança , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Leishmaniose Visceral/parasitologia , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Receptor do Fator de Crescimento Transformador beta Tipo IIRESUMO
Infection with the protozoan Leishmania infantum can lead to asymptomatic infection and protective immunity, or to the progressive and potentially fatal disease visceral leishmaniasis (VL). Published studies show host genetic background determines in part whether infected individuals will develop a symptomatic or asymptomatic outcome. The purpose of the current study was to fine map chromosome regions previously linked with risk for symptomatic (chromosome 9) or asymptomatic (chromosomes 15 and 19) manifestations of L. infantum infection. We conducted a family-based genetic study of VL and asymptomatic infection (detected by a DTH skin test) with a final post quality control sample of 961 individuals with full genotype and phenotype information from highly endemic neighborhoods of northeast Brazil. A total of 5485 SNPs under the linkage peaks on chromosomes 9, 15 and 19 were genotyped. No strong SNP associations were observed for the DTH phenotype. The most significant associations with the VL phenotype were with SNP rs1470217 (p=5.9e-05; pcorrected=0.057) on chromosome 9, and with SNP rs8107014 (p=1.4e-05; pcorrected=0.013) on chromosome 19. SNP rs1470217 is situated in a 180kb intergenic region between TMEM215 (Transmembrane protein 215) and APTX (Aprataxin). SNP rs8107014 lies in the intron between exons 26 and 27 of a 34 exon transcript (ENST00000204005) of LTBP4, (Latent transforming growth factor-beta-binding protein 4a). The latter supports growing evidence that the transforming growth factor-beta pathway is important in the immunopathogenesis of VL.
Assuntos
Mapeamento Cromossômico/métodos , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 9/genética , Leishmaniose Visceral/genética , Polimorfismo de Nucleotídeo Único , Brasil , Proteínas de Ligação a DNA/genética , Feminino , Ligação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Leishmania infantum/fisiologia , Masculino , Proteínas Nucleares/genética , Linhagem , Fenótipo , Locos de Características QuantitativasRESUMO
Approaches based on linear mixed models (LMMs) have recently gained popularity for modelling population substructure and relatedness in genome-wide association studies. In the last few years, a bewildering variety of different LMM methods/software packages have been developed, but it is not always clear how (or indeed whether) any newly-proposed method differs from previously-proposed implementations. Here we compare the performance of several LMM approaches (and software implementations, including EMMAX, GenABEL, FaST-LMM, Mendel, GEMMA and MMM) via their application to a genome-wide association study of visceral leishmaniasis in 348 Brazilian families comprising 3626 individuals (1972 genotyped). The implementations differ in precise details of methodology implemented and through various user-chosen options such as the method and number of SNPs used to estimate the kinship (relatedness) matrix. We investigate sensitivity to these choices and the success (or otherwise) of the approaches in controlling the overall genome-wide error-rate for both real and simulated phenotypes. We compare the LMM results to those obtained using traditional family-based association tests (based on transmission of alleles within pedigrees) and to alternative approaches implemented in the software packages MQLS, ROADTRIPS and MASTOR. We find strong concordance between the results from different LMM approaches, and all are successful in controlling the genome-wide error rate (except for some approaches when applied naively to longitudinal data with many repeated measures). We also find high correlation between LMMs and alternative approaches (apart from transmission-based approaches when applied to SNPs with small or non-existent effects). We conclude that LMM approaches perform well in comparison to competing approaches. Given their strong concordance, in most applications, the choice of precise LMM implementation cannot be based on power/type I error considerations but must instead be based on considerations such as speed and ease-of-use.
Assuntos
Estudo de Associação Genômica Ampla , Leishmaniose Visceral/genética , Modelos Lineares , Modelos Teóricos , Brasil , Humanos , Leishmaniose Visceral/patologia , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , SoftwareRESUMO
American cutaneous leishmaniasis (ACL) is a vector-transmitted infectious disease with an estimated 1.5 million new cases per year. In Brazil, ACL represents a significant public health problem, with approximately 30,000 new reported cases annually, representing an incidence of 18.5 cases per 100,000 inhabitants. Corte de Pedra is in a region endemic for ACL in the state of Bahia (BA), northeastern Brazil, with 500-1,300 patients treated annually. Over the last decade, population and family-based candidate gene studies were conducted in Corte de Pedra, founded on previous knowledge from studies on mice and humans. Notwithstanding limitations related to sample size and power, these studies contribute important genetic biomarkers that identify novel pathways of disease pathogenesis and possible new therapeutic targets. The present paper is a narrative review about ACL immunogenetics in BA, highlighting in particular the interacting roles of the wound healing gene FLI1 with interleukin-6 and genes SMAD2 and SMAD3 of the transforming growth factor beta signalling pathway. This research highlights the need for well-powered genetic and functional studies on Leishmania braziliensis infection as essential to define and validate the role of host genes in determining resistance/susceptibility regarding this disease.
Assuntos
Animais , Humanos , Camundongos , Doenças Endêmicas , Marcadores Genéticos/genética , Predisposição Genética para Doença/genética , Leishmaniose Cutânea/genética , Brasil/epidemiologia , Leishmaniose Cutânea/epidemiologiaRESUMO
American cutaneous leishmaniasis (ACL) is a vector-transmitted infectious disease with an estimated 1.5 million new cases per year. In Brazil, ACL represents a significant public health problem, with approximately 30,000 new reported cases annually, representing an incidence of 18.5 cases per 100,000 inhabitants. Corte de Pedra is in a region endemic for ACL in the state of Bahia (BA), northeastern Brazil, with 500-1,300 patients treated annually. Over the last decade, population and family-based candidate gene studies were conducted in Corte de Pedra, founded on previous knowledge from studies on mice and humans. Notwithstanding limitations related to sample size and power, these studies contribute important genetic biomarkers that identify novel pathways of disease pathogenesis and possible new therapeutic targets. The present paper is a narrative review about ACL immunogenetics in BA, highlighting in particular the interacting roles of the wound healing gene FLI1 with interleukin-6 and genes SMAD2 and SMAD3 of the transforming growth factor beta signalling pathway. This research highlights the need for well-powered genetic and functional studies on Leishmania braziliensis infection as essential to define and validate the role of host genes in determining resistance/susceptibility regarding this disease.
Assuntos
Doenças Endêmicas , Marcadores Genéticos/genética , Predisposição Genética para Doença/genética , Leishmaniose Cutânea/genética , Animais , Brasil/epidemiologia , Humanos , Leishmaniose Cutânea/epidemiologia , CamundongosRESUMO
To identify susceptibility loci for visceral leishmaniasis, we undertook genome-wide association studies in two populations: 989 cases and 1,089 controls from India and 357 cases in 308 Brazilian families (1,970 individuals). The HLA-DRB1-HLA-DQA1 locus was the only region to show strong evidence of association in both populations. Replication at this region was undertaken in a second Indian population comprising 941 cases and 990 controls, and combined analysis across the three cohorts for rs9271858 at this locus showed P(combined) = 2.76 × 10(-17) and odds ratio (OR) = 1.41, 95% confidence interval (CI) = 1.30-1.52. A conditional analysis provided evidence for multiple associations within the HLA-DRB1-HLA-DQA1 region, and a model in which risk differed between three groups of haplotypes better explained the signal and was significant in the Indian discovery and replication cohorts. In conclusion, the HLA-DRB1-HLA-DQA1 HLA class II region contributes to visceral leishmaniasis susceptibility in India and Brazil, suggesting shared genetic risk factors for visceral leishmaniasis that cross the epidemiological divides of geography and parasite species.
Assuntos
Predisposição Genética para Doença/genética , Cadeias alfa de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Leishmaniose Visceral/genética , Brasil , Eletroforese em Gel de Ágar , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/genética , Humanos , Índia , Modelos Lineares , Razão de Chances , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Retinochoroiditis manifests in patients infected with Toxoplasma gondii. Here, we assessed 30 sibships and 89 parent/case trios of presumed ocular toxoplasmosis (POT) to evaluate associations with polymorphisms in the NOD2 gene. Three haplotype-tagging single-nucleotide polymorphisms (tag-SNPs) within the NOD2 gene were genotyped. The family-based association test showed that the tag-SNP rs3135499 is associated with retinochoroiditis (P = .039). We then characterized the cellular immune response of 59 cases of POT and 4 cases of active ocular toxoplasmosis (AOT). We found no differences in levels of interferon γ (IFN-γ) and interleukin 2 produced by T-helper 1 cells when comparing patients with AOT or POT to asymptomatic individuals. Unexpectedly, we found an increased interleukin 17A (IL-17A) production in patients with POT or OAT. In patients with POT or AOT, the main cellular source of IL-17A was CD4(+)CD45RO(+)T-bet(-)IFN-γ(-) T-helper 17 cells. Altogether, our results suggest that NOD2 influences the production of IL-17A by CD4(+) T lymphocytes and might contribute to the development of ocular toxoplasmosis.
Assuntos
Interleucina-17/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único/genética , Toxoplasmose Ocular/genética , Adulto , Alelos , Brasil , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Estudos de Coortes , Citocinas/análise , Haplótipos , Humanos , Imunofenotipagem , Interleucina-17/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Fenótipo , Polimorfismo de Nucleotídeo Único/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Toxoplasmose Ocular/imunologiaRESUMO
Leishmania braziliensis causes cutaneous (CL) and mucosal (ML) leishmaniasis. In the mouse, Fli1 was identified as a gene influencing enhanced wound healing and resistance to CL caused by Leishmania major. Polymorphism at FLI1 is associated with CL caused by L. braziliensis in humans, with an inverse association observed for ML disease. Here we extend the analysis to look at other wound healing genes, including CTGF, TGFB1, TGFBR1/2, SMADS 2/3/4/7 and FLII, all functionally linked along with FLI1 in the TGF beta pathway. Haplotype tagging single nucleotide polymorphisms (tag-SNPs) were genotyped using Taqman technology in 325 nuclear families (652 CL cases; 126 ML cases) from Brazil. Robust case-pseudocontrol (CPC) conditional logistic regression analysis showed associations between CL and SNPs at CTGF (SNP rs6918698; CC genotype; OR 1.67; 95%CI 1.10-2.54; P=0.016), TGFBR2 (rs1962859; OR 1.50; 95%CI 1.12-1.99; P=0.005), SMAD2 (rs1792658; OR 1.57; 95%CI 1.04-2.38; P=0.03), SMAD7 (rs4464148; AA genotype; OR 2.80; 95%CI 1.00-7.87; P=0.05) and FLII (rs2071242; OR 1.60; 95%CI 1.14-2.24; P=0.005), and between ML and SNPs at SMAD3 (rs1465841; OR 2.15; 95%CI 1.13-4.07; P=0.018) and SMAD7 (rs2337107; TT genotype; OR 3.70; 95%CI 1.27-10.7; P=0.016). Stepwise logistic regression analysis showed that all SNPs associated with CL at FLI1, CTGF, TGFBR2, and FLII showed independent effects from each other, but SNPs at SMAD2 and SMAD7 did not add independent effects to SNPs from other genes. These results suggest that TGFß signalling via SMAD2 is important in directing events that contribute to CL, whereas signalling via SMAD3 is important in ML. Both are modulated by the inhibitory SMAD7 that acts upstream of SMAD2 and SMAD3 in this signalling pathway. Along with the published FLI1 association, these data further contribute to the hypothesis that wound healing processes are important determinants of pathology associated with cutaneous forms of leishmaniasis.