Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 699: 134230, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31522053

RESUMO

A quantitative understanding of the hydro-environmental factors that influence the occurrence of agricultural drought events would enable more strategic climate change adaptation and drought management plans. Practical drought hazard mapping remains challenging due to possible exclusion of the most pertinent drought drivers, and to the use of inadequate predictive models that cannot describe drought adequately. This research aims to develop new approaches to map agricultural drought hazard with state-of-the-art machine learning models, including classification and regression trees (CART), boosted regression trees (BRT), random forests (RF), multivariate adaptive regression splines (MARS), flexible discriminant analysis (FDA) and support vector machines (SVM). Hydro-environmental datasets were used to calculate the relative departure of soil moisture (RDSM) for eight severe droughts for drought-prone southeast Queensland, Australia, over the period 1994-2013. RDSM was then used to generate an agricultural drought inventory map. Eight hydro-environmental factors were used as potential predictors of drought. The goodness-of-fit and predictive performance of all models were evaluated using different threshold-dependent and threshold-independent methods, including the true skill statistic (TSS), Efficiency (E), F-score, and the area under the receiver operating characteristic curve (AUC-ROC). The RF model (AUC-ROC = 97.7%, TSS = 0.873, E = 0.929, F-score = 0.898) yielded the highest accuracy, while the FDA model (with AUC-ROC = 73.9%, TSS = 0.424, E = 0.719, F-score = 0.512) showed the worst performance. The plant available water holding capacity (PAWC), mean annual precipitation, and clay content were the most important variables to be used for predicting the agricultural drought. About 21.2% of the area is in high or very high drought risk classes, and therefore, warrant drought and environmental protection policies. Importantly, the models do not require data on the precipitation anomaly for any given drought year; the spatial patterns in AGH were consistent for all drought events, despite very different spatial patterns in precipitation anomaly among events. Such machine-learning approaches are able to construct an overall risk map, thus assisting in the adoption of a robust drought contingency planning measure not only for this area, but also, in other regions where drought presents a pressing challenge, including its influence on key practical dimensions of social, environmental and economic sustainability.

2.
Sci Total Environ ; 718: 134656, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31839310

RESUMO

Widespread detrimental and long-lasting droughts are having catastrophic impacts around the globe. Researchers, organizations, and policy makers need to work together to obtain precise information, enabling timely and accurate decision making to mitigate drought impacts. In this study, a spatial modeling approach based on an adaptive neuro-fuzzy inference system (ANFIS) and several metaheuristic optimizations (ANFIS-BA, ANFIS-GA, ANFIS-ICA, ANFIS-PSO) was developed to predict the spatial occurrence of drought in a region in southeastern Queensland, Australia. In this approach, data describing the distribution of eight drought-contributing factors were prepared for input into the models to serve as independent variables. Relative departures of rainfall (RDR) and relative departures of soil moisture (RDSM) were analyzed to identify locations where drought conditions have occurred. The set of locations in the study area identified as having experienced drought conditions was randomly divided into two groups, 70% were used for training and 30% for validation. The models employed these data to generate maps that predict the locations that would be expected to experience drought. The prediction accuracy of the model-produced drought maps was scrutinized with two evaluation metrics: area under the receiver operating characteristic curve (AUC) and root mean square error (RMSE). The results demonstrate that the hybridized models (ANFIS-BA (AUCmean = 83.7%, RMSEmean = 0.236), ANFIS-GA (AUCmean = 81.62%, RMSEmean = 0.247), ANFIS-ICA (AUCmean = 82.12%, RMSEmean = 0.247), and ANFIS-PSO (AUCmean = 81.42%, RMSEmean = 0.255)) yield better predictive performance than the standalone ANFIS model (AUCmean = 71.8%, RMSEmean = 0.344). Furthermore, sensitivity analyses indicated that plant-available water capacity, the percentage of soil comprised of sand, and mean annual precipitation were the most important predictors of drought hazard. The versatility of the new approach for spatial drought modeling and the capacity of ANFIS model hybridization to improve model performance suggests great potential to assist decision makers in their formulations of drought risk, recovery, and response management, and in the development of contingency plans.

3.
Sci Total Environ ; 672: 239-252, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30959291

RESUMO

Land subsidence (LS) is among the most critical environmental problems, affecting both agricultural sustainability and urban infrastructure. Existing methods often use either simple regression models or complex hydraulic models to explain and predict LS. There are few studies that identify the risk factors and predict the risk of LS using machine learning models. This study compares four tree-based machine learning models for land subsidence hazard modelling at a study area in Hamadan plain (Iran). The study also analyzes the importance of six risk factors including topography (elevation, slope), geomorphology (distance from stream, drainage density), hydrology (groundwater drawdown) and lithology on LS. Thematic layers of each variable related to the LS phenomenon are prepared and utilized as the inputs to the four tree-based machine learning models, including the Rule-Based Decision Tree (RBDT), Boosted Regression Trees (BRT), Classification And Regression Tree (CART), and the Random Forest (RF) algorithms to produce a consolidated LS hazard map. The accuracy of the generated maps is then evaluated using the area under the receiver operating characteristic curve (AUC) and the True Skill Statistics (TSS). The RF approach had the lowest predictive error for mapping the LS hazard (i.e., AUC 96.7% for training, AUC 93.8% for validation, TSS 0.912 for training, TSS 0.904 for validation) followed by BRT. Groundwater drawdown was seen to be the most influential factor that contributed to land subsidence in the present study area, followed by lithology and distance from the stream network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...