Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 317: 137914, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682637

RESUMO

Heavy metals (HMs) are a vital elements for investigating the pollutant level of sediments and water bodies. The Murray-Darling river basin area located in Australia is experiencing severe damage to increased crop productivity, loss of soil fertility, and pollution levels within the vicinity of the river system. This basin is the most effective primary production area in Australia where agricultural productivity is increased the gross domastic product in the entire mainland. In this study, HMs contaminations are examined for eight study sites selected for the Murray-Darling river basin where the inverse Distance Weighting interpolation method is used to identify the distribution of HMs. To pursue this, four different pollution indices namely the Geo-accumulation index (Igeo), Contamination factor (CF), Pollution load index (PLI), single-factor pollution index (SPLI), and the heavy metal pollution index (HPI) are computed. Following this, the Pearson correlation matrix is used to identify the relationships among the two HM parameters. The results indicate that the conductivity and N (%) are relatively high in respect to using Igeo and PLI indexes for study sites 4, 6, and 7 with 2.93, 3.20, and 1.38, respectively. The average HPI is 216.9071 that also indicates higher level pollution in the Murray-Darling river basin and the highest HPI value is noted in sample site 1 (353.5817). The study also shows that the levels of Co, P, Conductivity, Al, and Mn are mostly affected by HMs and that these indices indicate the maximum HM pollution level in the Murray-Darling river basin. Finally, the results show that the high HM contamination level appears to influence human health and local environmental conditions.


Assuntos
Metais Pesados , Solo , Humanos , Monitoramento Ambiental/métodos , Rios , Metais Pesados/análise , Austrália , Análise Espacial , Medição de Risco , China , Sedimentos Geológicos
2.
Environ Sci Pollut Res Int ; 30(11): 30984-31034, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36441299

RESUMO

Urban areas are quickly established, and the overwhelming population pressure is triggering heat stress in the metropolitan cities. Climate change impact is the key aspect for maintaining the urban areas and building proper urban planning because spreading of the urban area destroyed the vegetated land and increased heat variation. Remote sensing-based on Landsat images are used for investigating the vegetation circumstances, thermal variation, urban expansion, and surface urban heat island or SUHI in the three megacities of Iraq like Baghdad, Erbil, and Basrah. Four satellite imageries are used aimed at land use and land cover (LULC) study from 1990 to 2020, which indicate the land transformation of those three major cities in Iraq. The average annually temperature is increased during  30 years like Baghdad (0.16 °C), Basrah (0.44 °C), and Erbil (0.32 °C). The built-up area is increased 147.1 km2 (Erbil), 217.86 km2 (Baghdad), and 294.43 km2 (Erbil), which indicated the SUHI affects the entire area of the three cities. The bare land is increased in Baghdad city, which indicated the local climatic condition and affected the livelihood. Basrah City is affected by anthropogenic activities and most areas of Basrah were converted into built-up land in the last 30 years. In Erbil, agricultural land (295.81 km2) is increased. The SUHI study results indicated the climate change effect in those three cities in Iraq. This study's results are more useful for planning, management, and sustainable development of urban areas.


Assuntos
Monitoramento Ambiental , Temperatura Alta , Cidades , Iraque , Temperatura , Urbanização
3.
Sci Rep ; 12(1): 19466, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376376

RESUMO

Water distribution systems (WDSs) are used to transmit and distribute water resources in cities. Water distribution networks (WDNs) are partitioned into district metered areas (DMAs) by water network partitioning (WNP), which can be used for leak control, pollution monitoring, and pressure optimization in WDS management. In order to overcome the limitations of optimal search range and the decrease of recovery ability caused by two-step WNP and fixed DMAs in previous studies, this study developed a new method combining a graph neural network to realize integrated WNP and dynamic DMAs to optimize WDS management and respond to emergencies. The proposed method was tested in a practical case study; the results showed that good hydraulic performance of the WDN was maintained and that dynamic DMAs demonstrated excellent stability in emergency situations, which proves the effectiveness of the method in WNP.


Assuntos
Abastecimento de Água , Água , Recursos Hídricos , Redes Neurais de Computação , Cidades
4.
Sci Rep ; 12(1): 17710, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271129

RESUMO

Covalent and non-covalent nanofluids were tested inside a circular tube fitted with twisted tape inserts with 45° and 90° helix angles. Reynolds number was 7000 ≤ Re ≤ 17,000, and thermophysical properties were assessed at 308 K. The physical model was solved numerically via a two-equation eddy-viscosity model (SST k-omega turbulence). GNPs-SDBS@DW and GNPs-COOH@DW nanofluids with concentrations (0.025 wt.%, 0.05 wt.% and 0.1 wt.%) were considered in this study. The twisted pipes' walls were heated under a constant temperature of 330 K. The current study considered six parameters: outlet temperature, heat transfer coefficient, average Nusselt number, friction factor, pressure loss, and performance evaluation criterion. In both cases (45° and 90° helix angles), GNPs-SDBS@DW nanofluids presented higher thermohydraulic performance than GNPs-COOH@DW and increased by increasing the mass fractions such as 1.17 for 0.025 wt.%, 1.19 for 0.05 wt.% and 1.26 for 0.1 wt.%. Meanwhile, in both cases (45° and 90° helix angles), the value of thermohydraulic performance using GNPs-COOH@DW was 1.02 for 0.025 wt.%, 1.05 for 0.05 wt.% and 1.02 for 0.1 wt.%.

5.
Environ Sci Pollut Res Int ; 29(51): 77157-77187, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35672647

RESUMO

This study aims to evaluate the usefulness and effectiveness of four machine learning (ML) models for modelling cyanobacteria blue-green algae (CBGA) at two rivers located in the USA. The proposed modelling framework was based on establishing a link between five water quality variables and the concentration of CBGA. For this purpose, artificial neural network (ANN), extreme learning machine (ELM), random forest regression (RFR), and random vector functional link (RVFL) are developed. First, the four models were developed using only water quality variables. Second, based on the results of the first, a new modelling strategy was introduced based on preprocessing signal decomposition. Hence, the empirical mode decomposition (EMD), the variational mode decomposition (VMD), and the empirical wavelet transform (EWT) were used for decomposing the water quality variables into several subcomponents, and the obtained intrinsic mode functions (IMFs) and multiresolution analysis (MRA) components were used as new input variables for the ML models. Results of the present investigation show that (i) using single models, good predictive accuracy was obtained using the RFR model exhibiting an R and NSE values of ≈0.914 and ≈0.833 for the first station, and ≈0.944 and ≈0.884 for the second station, while the others models, i.e., ANN, RVFL, and ELM, have failed to provide a good estimation of the CBGA; (ii) the decomposition methods have contributed to a significant improvement of the individual models performances; (iii) among the thee decomposition methods, the EMD was found to be superior to the VMD and EWT; and (iv) the ANN and RFR were found to be more accurate compared to the ELM and RVFL models, exhibiting high numerical performances with R and NSE values of approximately ≈0.983, ≈0.967, and ≈0.989 and ≈0.976, respectively.


Assuntos
Cianobactérias , Análise de Ondaletas , Aprendizado de Máquina , Redes Neurais de Computação , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...