Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 103(6): 2025-2038, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32538516

RESUMO

Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl-CoA-independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection-pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.


Assuntos
Aciltransferases/genética , Proteínas de Algas/genética , Evolução Biológica , Proteínas de Plantas/genética , Plantas/enzimologia , Aciltransferases/química , Aciltransferases/metabolismo , Proteínas de Algas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Triglicerídeos/metabolismo
2.
Plant J ; 102(4): 856-871, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31991039

RESUMO

Microalgal oils in the form of triacylglycerols (TAGs) are broadly used as nutritional supplements and biofuels. Diacylglycerol acyltransferase (DGAT) catalyzes the final step of acyl-CoA-dependent biosynthesis of TAG, and is considered a key target for manipulating oil production. Although a growing number of DGAT1s have been identified and over-expressed in some algal species, the detailed structure-function relationship, as well as the improvement of DGAT1 performance via protein engineering, remain largely untapped. Here, we explored the structure-function features of the hydrophilic N-terminal domain of DGAT1 from the green microalga Chromochloris zofingiensis (CzDGAT1). The results indicated that the N-terminal domain of CzDGAT1 was less disordered than those of the higher eukaryotic enzymes and its partial truncation or complete removal could substantially decrease enzyme activity, suggesting its possible role in maintaining enzyme performance. Although the N-terminal domains of animal and plant DGAT1s were previously found to bind acyl-CoAs, replacement of CzDGAT1 N-terminus by an acyl-CoA binding protein (ACBP) could not restore enzyme activity. Interestingly, the fusion of ACBP to the N-terminus of the full-length CzDGAT1 could enhance the enzyme affinity for acyl-CoAs and augment protein accumulation levels, which ultimately drove oil accumulation in yeast cells and tobacco leaves to higher levels than the full-length CzDGAT1. Overall, our findings unravel the distinct features of the N-terminus of algal DGAT1 and provide a strategy to engineer enhanced performance in DGAT1 via protein fusion, which may open a vista in generating improved membrane-bound acyl-CoA-dependent enzymes and boosting oil biosynthesis in plants and oleaginous microorganisms.


Assuntos
Clorófitas/enzimologia , Diacilglicerol O-Aciltransferase/metabolismo , Inibidor da Ligação a Diazepam/metabolismo , Microalgas/enzimologia , Triglicerídeos/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Biocombustíveis , Clorófitas/genética , Diacilglicerol O-Aciltransferase/genética , Inibidor da Ligação a Diazepam/genética , Cinética , Microalgas/genética , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Nicotiana/enzimologia , Nicotiana/genética
3.
Lipids ; 54(9): 571-579, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31478204

RESUMO

Phospholipid:diacylglycerol acyltransferase (PDAT) catalyzes the acyl-CoA-independent triacylglycerol (TAG) biosynthesis in plants and oleaginous microorganisms and thus is a key target in lipid research. The conventional in vitro PDAT activity assay involves the use of radiolabeled substrates, which, however, are expensive and demand strict regulation. In this study, a reliable fluorescence-based method using nitrobenzoxadiazole-labeled diacylglycerol (NBD-DAG) as an alternative substrate was established and subsequently used to characterize the enzyme activity and kinetics of a recombinant Arabidopsis thaliana PDAT1 (AtPDAT1). We also demonstrate that the highly toxic benzene used in typical PDAT assays can be substituted with diethyl ether without affecting the formation rate of NBD-TAG. Overall, this method works well with a broad range of PDAT protein content and shows linear correlation with the conventional method with radiolabeled substrates, and thus may be applicable to PDAT from various plant and microorganism species.


Assuntos
Aciltransferases/análise , Arabidopsis/enzimologia , Benzoxazóis/química , Fluorescência , Corantes Fluorescentes/química , Glicerídeos/química , Aciltransferases/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência
4.
J Biol Chem ; 294(43): 15862-15874, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31439667

RESUMO

De novo phosphatidylcholine (PC) biosynthesis via the Kennedy pathway involves highly endergonic biochemical reactions that must be fine-tuned with energy homeostasis. Previous studies have shown that CTP:phosphocholine cytidylyltransferase (CCT) is an important regulatory enzyme in this pathway and that its activity can be controlled at both transcriptional and posttranslational levels. Here we identified an important additional mechanism regulating plant CCT1 activity. Comparative analysis revealed that Arabidopsis CCT1 (AtCCT1) contains catalytic and membrane-binding domains that are homologous to those of rat CCT1. In contrast, the C-terminal phosphorylation domain important for stringent regulation of rat CCT1 was apparently missing in AtCCT1. Instead, we found that AtCCT1 contains a putative consensus site (Ser-187) for modification by sucrose nonfermenting 1-related protein kinase 1 (SnRK1 or KIN10/SnRK1.1), involved in energy homeostasis. Phos-tag SDS-PAGE coupled with MS analysis disclosed that SnRK1 indeed phosphorylates AtCCT1 at Ser-187, and we found that AtCCT1 phosphorylation substantially reduces its activity by as much as 70%. An S187A variant exhibited decreased activity, indicating the importance of Ser-187 in catalysis, and this variant was less susceptible to SnRK1-mediated inhibition. Protein truncation and liposome binding studies indicated that SnRK1-mediated AtCCT1 phosphorylation directly affects the catalytic domain rather than interfering with phosphatidate-mediated AtCCT1 activation. Overexpression of the AtCCT1 catalytic domain in Nicotiana benthamiana leaves increased PC content, and SnRK1 co-expression reduced this effect. Taken together, our results suggest that SnRK1 mediates the phosphorylation and concomitant inhibition of AtCCT1, revealing an additional mode of regulation for this key enzyme in plant PC biosynthesis.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Colina-Fosfato Citidililtransferase/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteínas de Arabidopsis/química , Domínio Catalítico , Colina-Fosfato Citidililtransferase/química , Sequência Conservada , Evolução Molecular , Cinética , Modelos Biológicos , Fosforilação , Fosforilcolina/metabolismo , Fosfosserina/metabolismo , Folhas de Planta/genética , Domínios Proteicos , Ratos , Homologia Estrutural de Proteína , Nicotiana/genética
5.
J Agric Food Chem ; 67(1): 291-298, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30543104

RESUMO

Diacylglycerol acyltransferase (DGAT) catalyzes the last and committed step of the acyl-CoA-dependent TAG biosynthesis and thus is a key target for manipulating oil production in microalgae. The microalga Chromochloris zofingiensis can accumulate substantial amounts of triacylglycerol (TAG) and represents a promising source of algal lipids. In this study, C. zofingiensis DGAT2s (CzDGAT2s) were characterized with in silico, in vivo (yeast), and in vitro assays. Putative CzDGAT2s were identified, and their functional motifs and evolutionary relationship with other DGAT2s were analyzed. When CzDGAT2s were individually expressed in a TAG-deficient Saccharomyces cerevisiae strain, only CzDGAT2C could restore the TAG biosynthesis. Further in vitro assays indicated that CzDGAT2C displayed typical DGAT activity, which was fitted to the Michaelis-Menten equation, and N- and C-terminals were important for the enzyme activity. In addition, membrane yeast two-hybrid assay revealed a possible DGAT2 activity modulation via the formation of homodimer/heterodimer among different DGAT2 isoforms.


Assuntos
Clorófitas/enzimologia , Diacilglicerol O-Aciltransferase/química , Microalgas/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Clorófitas/química , Clorófitas/classificação , Clorófitas/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Dimerização , Cinética , Microalgas/química , Microalgas/classificação , Microalgas/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Triglicerídeos/metabolismo
6.
FEMS Microbiol Lett ; 308(1): 40-7, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20487022

RESUMO

This study was aimed at describing the spectrum and dynamics of proteins associated with the membrane in the nitrogen-fixing bacterium Herbaspirillum seropedicae according to the availability of fixed nitrogen. Using two-dimensional electrophoresis we identified 79 protein spots representing 45 different proteins in the membrane fraction of H. seropedicae. Quantitative analysis of gel images of membrane extracts indicated two spots with increased levels when cells were grown under nitrogen limitation in comparison with nitrogen sufficiency; these spots were identified as the GlnK protein and as a conserved noncytoplasmic protein of unknown function which was encoded in an operon together with GlnK and AmtB. Comparison of gel images of membrane extracts from cells grown under nitrogen limitation or under the same regime but collected after an ammonium shock revealed two proteins, GlnB and GlnK, with increased levels after the shock. The P(II) proteins were not present in the membrane fraction of an amtB mutant. The results reported here suggest that changes in the cellular localization of P(II) might play a role in the control of nitrogen metabolism in H. seropedicae.


Assuntos
Membrana Celular/química , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Herbaspirillum/química , Proteínas de Membrana Transportadoras/análise , Proteoma/análise , Compostos de Amônio Quaternário/metabolismo , Proteínas de Bactérias/análise , Proteínas de Transporte de Cátions/análise , Eletroforese em Gel Bidimensional , Herbaspirillum/fisiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...