Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(3): 646-662, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38291755

RESUMO

The upregulation of Orai1 and subsequent store-operated Ca2+ entry (SOCE) has been associated with adverse cardiac remodeling and heart failure (HF). However, the mechanism underlying Orai1 upregulation and its role in myocardial infarction remains unclear. Our study investigated the role of Orai1 in activating adenylyl cyclase 8 (AC8) and cyclic AMP (cAMP) response element-binding protein (CREB), as well as its contribution to cardiac dysfunction induced by ischemia and reperfusion (I/R). We found that I/R evoked an increase in the expression of Orai1 and AC8 in rats' hearts, resulting in a substantial rise in diastolic Ca2+ concentration ([Ca2+]i), and reduced ventricular contractions. The expression of Orai1 and AC8 was also increased in ventricular biopsies of post-ischemic HF patients. Mechanistically, we demonstrate that I/R activation of Orai1 stimulated AC8, which produced cAMP and phosphorylated CREB. Subsequently, p-CREB activated the ORAI1 promoter, resulting in Orai1 upregulation and SOCE exacerbation. Intramyocardial administration of AAV9 carrying AC8 short hairpin RNA decreased the expression of AC8, Orai1 and CREB, which restored diastolic [Ca2+]i and improved cardiac contraction. Therefore, our data suggests that the axis composed by Orai1/AC8/CREB plays a critical role in I/R-induced cardiac dysfunction, representing a potential new therapeutic target to limit the progression of the disease toward HF.


Assuntos
Adenilil Ciclases , Infarto do Miocárdio , Humanos , Ratos , Animais , Regulação para Cima , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Sinalização do Cálcio , Infarto do Miocárdio/genética , Cálcio/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569674

RESUMO

Myocardial infarction (MI) causes massive loss of cardiac myocytes and injury to the coronary microcirculation, overwhelming the limited capacity of cardiac regeneration. Cardiac repair after MI is finely organized by complex series of procedures involving a robust angiogenic response that begins in the peri-infarcted border area of the infarcted heart, concluding with fibroblast proliferation and scar formation. Efficient neovascularization after MI limits hypertrophied myocytes and scar extent by the reduction in collagen deposition and sustains the improvement in cardiac function. Compelling evidence from animal models and classical in vitro angiogenic approaches demonstrate that a plethora of well-orchestrated signaling pathways involving Notch, Wnt, PI3K, and the modulation of intracellular Ca2+ concentration through ion channels, regulate angiogenesis from existing endothelial cells (ECs) and endothelial progenitor cells (EPCs) in the infarcted heart. Moreover, cardiac repair after MI involves cell-to-cell communication by paracrine/autocrine signals, mainly through the delivery of extracellular vesicles hosting pro-angiogenic proteins and non-coding RNAs, as microRNAs (miRNAs). This review highlights some general insights into signaling pathways activated under MI, focusing on the role of Ca2+ influx, Notch activated pathway, and miRNAs in EC activation and angiogenesis after MI.


Assuntos
Células Progenitoras Endoteliais , MicroRNAs , Infarto do Miocárdio , Animais , Cicatriz/patologia , Neovascularização Fisiológica/fisiologia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Progenitoras Endoteliais/metabolismo
3.
Front Cardiovasc Med ; 9: 777717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402537

RESUMO

Background: Primary percutaneous coronary intervention (PPCI) in patients with ST-segment elevation myocardial infarction (STEMI) improves the survival of patients; nevertheless, some patients develop left ventricular adverse remodeling (LVAR) a few months after the intervention. The main objective of this study was to characterize the role of pro-inflammatory cell populations, related cytokines, and microRNAs (miRNAs) released after PPCI as reliable prognostic biomarkers for LVAR in patients with STEMI. Methods: We evaluated the level of pro-inflammatory subsets, before and after revascularization, 1 and 6 months after PPCI, using flow cytometry. We also performed a miRNA microarray in isolated peripheral blood mononuclear cells (PBMCs) and examined the levels of 27 cytokines in patients' serum of patients by multiplex ELISA. Results: We observed that the levels of classical and intermediate monocytes increased 6 h after PPCI in patients who developed LVAR later. Multivariate regression analysis and ROC curves indicated that intermediate monocytes, after PPCI, were the best monocyte subset that correlated with LVAR. Within the 27 evaluated cytokines evaluated, we found that the increase in the level of vascular endothelial growth factor (VEGF) correlated with LVAR. Furthermore, the microarray analysis of PBMCs determined that up to 1,209 miRNAs were differentially expressed 6 h after PPCI in LVAR patients, compared with those who did not develop LVAR. Using RT-qPCR we confirmed a significant increase in miR-16, miR-21-5p, and miR-29a-3p, suggested to modulate the expression of different cytokines, 6 h post-PPCI in LVAR patients. Interestingly, we determined that the combined analysis of the levels of the intermediate monocyte subpopulation, VEGF, and miRNAs gave a better association with LVAR appearance. Similarly, combined ROC analysis provided high accurate specificity and sensibility to identify STEMI patients who will develop LVAR. Conclusion: Our data suggest that the combined analysis of intermediate monocytes, VEGF, and miRNAs predicts LVAR in STEMI patients.

4.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829997

RESUMO

Despite the considerable progress in strategies of myocardial protection, ischemic heart diseases (IHD) and consequent heart failure (HF) remain the main cause of mortality worldwide. Several procedures are used routinely to guarantee the prompt and successful reestablishment of blood flow to preserve the myocardial viability of infarcted hearts from ischemia injuries. However, ischemic heart reperfusion/revascularization triggers additional damages that occur when oxygen-rich blood re-enters the vulnerable myocardial tissue, which is a phenomenon known as ischemia and reperfusion (I/R) syndrome. Complications of I/R injuries provoke the adverse cardiac remodeling, involving inflammation, mishandling of Ca2+ homeostasis, apoptotic genes activation, cardiac myocytes loss, etc., which often progress toward HF. Therefore, there is an urgent need to develop new cardioprotective therapies for IHD and HF. Compelling evidence from animal studies and pilot clinical trials in HF patients suggest that urocortin (Ucn) isoforms, which are peptides associated with stress and belonging to the corticotropin releasing factor family, have promising potential to improve cardiovascular functions by targeting many signaling pathways at different molecular levels. This review highlights the current knowledge on the role of urocortin isoforms in cardioprotection, focusing on its acute and long-term effects.


Assuntos
Infarto do Miocárdio/genética , Isquemia Miocárdica/genética , Traumatismo por Reperfusão/genética , Urocortinas/genética , Apoptose/genética , Remodelamento Atrial/genética , Coração/fisiopatologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
5.
J Biol Chem ; 296: 100254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33380424

RESUMO

Melatonin has been reported to induce effective reduction in growth and development in a variety of tumors, including breast cancer. In triple-negative breast cancer (TNBC) cells, melatonin attenuates a variety of cancer features, such as tumor growth and apoptosis resistance, through a number of still poorly characterized mechanisms. One biological process that is important for TNBC cells is store-operated Ca2+ entry (SOCE), which is modulated by TRPC6 expression and function. We wondered whether melatonin might intersect with this pathway as part of its anticancer activity. We show that melatonin, in the nanomolar range, significantly attenuates TNBC MDA-MB-231 cell viability, proliferation, and migration in a time- and concentration-dependent manner, without having any effect on nontumoral breast epithelial MCF10A cells. Pretreatment with different concentrations of melatonin significantly reduced SOCE in MDA-MB-231 cells without altering Ca2+ release from the intracellular stores. By contrast, SOCE in MCF10A cells was unaffected by melatonin. In the TNBC MDA-MB-468 cell line, melatonin not only attenuated viability, migration, and SOCE, but also reduced TRPC6 expression in a time- and concentration-dependent manner, without altering expression or function of the Ca2+ channel Orai1. The expression of exogenous TRPC6 overcame the effect of melatonin on SOCE and cell proliferation, and silencing or inhibition of TRPC6 impaired the inhibitory effect of melatonin on SOCE. These findings indicate that TRPC6 downregulation might be involved in melatonin's inhibitory effects on Ca2+ influx and the maintenance of cancer hallmarks and point toward a novel antitumoral mechanism of melatonin in TNBC cells.


Assuntos
Antioxidantes/farmacologia , Canais de Cálcio/metabolismo , Melatonina/farmacologia , Canal de Cátion TRPC6/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Canal de Cátion TRPC6/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
6.
Cells ; 9(1)2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936700

RESUMO

Transient receptor potential canonical (TRPC) channels are ubiquitously expressed in excitable and non-excitable cardiac cells where they sense and respond to a wide variety of physical and chemical stimuli. As other TRP channels, TRPC channels may form homo or heterotetrameric ion channels, and they can associate with other membrane receptors and ion channels to regulate intracellular calcium concentration. Dysfunctions of TRPC channels are involved in many types of cardiovascular diseases. Significant increase in the expression of different TRPC isoforms was observed in different animal models of heart infarcts and in vitro experimental models of ischemia and reperfusion. TRPC channel-mediated increase of the intracellular Ca2+ concentration seems to be required for the activation of the signaling pathway that plays minor roles in the healthy heart, but they are more relevant for cardiac responses to ischemia, such as the activation of different factors of transcription and cardiac hypertrophy, fibrosis, and angiogenesis. In this review, we highlight the current knowledge regarding TRPC implication in different cellular processes related to ischemia and reperfusion and to heart infarction.


Assuntos
Cálcio/metabolismo , Isquemia Miocárdica/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Humanos , Modelos Biológicos , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
7.
Cancers (Basel) ; 11(11)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652779

RESUMO

Orai1 plays a major role in store-operated Ca2+ entry (SOCE) in triple-negative breast cancer (TNBC) cells. This channel is inactivated via different mechanisms, including protein kinase C (PKC) and protein kinase A (PKA)-dependent phosphorylation at Ser-27 and Ser-30 or Ser-34, respectively, which shapes the Ca2+ responses to agonists. The Ca2+ calmodulin-activated adenylyl cyclase type 8 (AC8) was reported to interact directly with Orai1, thus mediating a dynamic interplay between the Ca2+- and cyclic adenosine monophosphate (cAMP)-dependent signaling pathways. Here, we show that the breast cancer cell lines MCF7 and MDA-MB-231 exhibit enhanced expression of Orai1 and AC8 as compared to the non-tumoral breast epithelial MCF10A cell line. In these cells, AC8 interacts with the Orai1α variant in a manner that is not regulated by Orai1 phosphorylation. AC8 knockdown in MDA-MB-231 cells, using two different small interfering RNAs (siRNAs), attenuates thapsigargin (TG)-induced Ca2+ entry and also Ca2+ influx mediated by co-expression of Orai1 and the Orai1-activating small fragment (OASF) of STIM1 (stromal interaction molecule-1). Conversely, AC8 overexpression enhances SOCE, as well as Ca2+ entry, in cells co-expressing Orai1 and OASF. In MDA-MB-231 cells, we found that AC8 overexpression reduces the Orai1 phosphoserine content, thus suggesting that AC8 interferes with Orai1 serine phosphorylation, which takes place at residues located in the AC8-binding site. Consistent with this, the subset of Orai1 associated with AC8 in naïve MDA-MB-231 cells is not phosphorylated in serine residues in contrast to the AC8-independent Orai1 subset. AC8 expression knockdown attenuates migration of MCF7 and MDA-MB-231 cells, while this maneuver has no effect in the MCF10A cell line, which is likely attributed to the low expression of AC8 in these cells. We found that AC8 is required for FAK (focal adhesion kinase) phosphorylation in MDA-MB-231 cells, which might explain its role in cell migration. Finally, we found that AC8 is required for TNBC cell proliferation. These findings indicate that overexpression of AC8 in breast cancer MDA-MB-231 cells impairs the phosphorylation-dependent Orai1 inactivation, a mechanism that might support the enhanced ability of these cells to migrate.

8.
Front Physiol ; 10: 159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881310

RESUMO

Calcium is an important second messenger required not only for the excitation-contraction coupling of the heart but also critical for the activation of cell signaling pathways involved in the adverse cardiac remodeling and consequently for the heart failure. Sustained neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart's structural and molecular adaptation might elevate the risk of developing heart failure and malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by numerous physical and/or chemical stimuli. TRP channels participate to the handling of the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different cardiovascular alterations. This review provides an overview of the current knowledge of TRP proteins implication in the pathologic process of some frequent cardiac diseases associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, and conduction alteration.

9.
Circ Res ; 122(7): e49-e61, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29467196

RESUMO

RATIONALE: The MR (mineralocorticoid receptor) antagonists belong to the current therapeutic armamentarium for the management of cardiovascular diseases, but the mechanisms conferring their beneficial effects are poorly understood. Part of the cardiovascular effects of MR is because of the regulation of L-type Cav1.2 Ca2+ channel expression, which is generated by tissue-specific alternative promoters as a long cardiac or short vascular N-terminal transcripts. OBJECTIVE: To analyze the molecular mechanisms by which aldosterone, through MR, modulates Cav1.2 expression and function in a tissue-specific manner. METHODS AND RESULTS: In primary cultures of neonatal rat ventricular myocytes, aldosterone exposure for 24 hours increased in a concentration-dependent manner long cardiac Cav1.2 N-terminal transcripts expression at both mRNA and protein levels, correlating with enhanced concentration-, time-, and MR-dependent P1-promoter activity. In silico analysis and mutagenesis identified MR interaction with both specific activating and repressing DNA-binding elements on the P1-promoter. The relevance of this regulation is confirmed both ex and in vivo in transgenic mice harboring the luciferase reporter gene under the control of the cardiac P1-promoter. Moreover, we show that this cis-regulatory mechanism is not limited to the heart. Indeed, in smooth muscle cells from different vascular beds, in which the short vascular Cav1.2 N-terminal transcripts is normally the major isoform, we found that MR signaling activates long cardiac Cav1.2 N-terminal transcripts expression through P1-promoter activation, leading to vascular contractile dysfunction. These results were further corroborated in hypertensive aldosterone/salt rodent models, showing notably a positive correlation between blood pressure and cardiac P1-promoter activity in aorta. This new vascular long cardiac Cav1.2 N-terminal transcripts molecular signature reduced sensitivity to the Ca2+ channel blocker, nifedipine, in aldosterone-treated vessels. CONCLUSIONS: Our results reveal that MR acts as a transcription factor to translate aldosterone signal into specific cardiac P1-promoter activation that might influence the therapeutic outcome of cardiovascular diseases.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Receptores de Mineralocorticoides/metabolismo , Ativação Transcricional , Aldosterona/farmacologia , Animais , Canais de Cálcio Tipo L/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...