Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 14(1): 11, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769542

RESUMO

BACKGROUND: Myotonic Dystrophy type I (DM1) is the most common muscular dystrophy in adults. Previous reports have highlighted that neuromuscular junctions (NMJs) deteriorate in skeletal muscle from DM1 patients and mouse models thereof. However, the underlying pathomechanisms and their contribution to muscle dysfunction remain unknown. METHODS: We compared changes in NMJs and activity-dependent signalling pathways in HSALR and Mbnl1ΔE3/ΔE3 mice, two established mouse models of DM1. RESULTS: Muscle from DM1 mouse models showed major deregulation of calcium/calmodulin-dependent protein kinases II (CaMKIIs), which are key activity sensors regulating synaptic gene expression and acetylcholine receptor (AChR) recycling at the NMJ. Both mouse models exhibited increased fragmentation of the endplate, which preceded muscle degeneration. Endplate fragmentation was not accompanied by changes in AChR turnover at the NMJ. However, the expression of synaptic genes was up-regulated in mutant innervated muscle, together with an abnormal accumulation of histone deacetylase 4 (HDAC4), a known target of CaMKII. Interestingly, denervation-induced increase in synaptic gene expression and AChR turnover was hampered in DM1 muscle. Importantly, CaMKIIß/ßM overexpression normalized endplate fragmentation and synaptic gene expression in innervated Mbnl1ΔE3/ΔE3 muscle, but it did not restore denervation-induced synaptic gene up-regulation. CONCLUSIONS: Our results indicate that CaMKIIß-dependent and -independent mechanisms perturb synaptic gene regulation and muscle response to denervation in DM1 mouse models. Changes in these signalling pathways may contribute to NMJ destabilization and muscle dysfunction in DM1 patients.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Modelos Animais de Doenças , Músculo Esquelético , Distrofia Miotônica , Junção Neuromuscular , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/fisiopatologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Junção Neuromuscular/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Camundongos , Humanos , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/genética , Masculino , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 10(1): 3187, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320633

RESUMO

Loss of innervation of skeletal muscle is a determinant event in several muscle diseases. Although several effectors have been identified, the pathways controlling the integrated muscle response to denervation remain largely unknown. Here, we demonstrate that PKB/Akt and mTORC1 play important roles in regulating muscle homeostasis and maintaining neuromuscular endplates after nerve injury. To allow dynamic changes in autophagy, mTORC1 activation must be tightly balanced following denervation. Acutely activating or inhibiting mTORC1 impairs autophagy regulation and alters homeostasis in denervated muscle. Importantly, PKB/Akt inhibition, conferred by sustained mTORC1 activation, abrogates denervation-induced synaptic remodeling and causes neuromuscular endplate degeneration. We establish that PKB/Akt activation promotes the nuclear import of HDAC4 and is thereby required for epigenetic changes and synaptic gene up-regulation upon denervation. Hence, our study unveils yet-unknown functions of PKB/Akt-mTORC1 signaling in the muscle response to nerve injury, with important implications for neuromuscular integrity in various pathological conditions.


Assuntos
Autofagia/fisiologia , Histona Desacetilases/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Denervação Muscular , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Placa Motora/patologia , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética
3.
Skelet Muscle ; 6: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27004103

RESUMO

BACKGROUND: The mammalian target of rapamycin complex 1 (mTORC1) is a central node in a network of signaling pathways controlling cell growth and survival. This multiprotein complex integrates external signals and affects different nutrient pathways in various organs. However, it is not clear how alterations of mTORC1 signaling in skeletal muscle affect whole-body metabolism. RESULTS: We characterized the metabolic phenotype of young and old raptor muscle knock-out (RAmKO) and TSC1 muscle knock-out (TSCmKO) mice, where mTORC1 activity in skeletal muscle is inhibited or constitutively activated, respectively. Ten-week-old RAmKO mice are lean and insulin resistant with increased energy expenditure, and they are resistant to a high-fat diet (HFD). This correlates with an increased expression of histone deacetylases (HDACs) and a downregulation of genes involved in glucose and fatty acid metabolism. Ten-week-old TSCmKO mice are also lean, glucose intolerant with a decreased activation of protein kinase B (Akt/PKB) targets that regulate glucose transporters in the muscle. The mice are resistant to a HFD and show reduced accumulation of glycogen and lipids in the liver. Both mouse models suffer from a myopathy with age, with reduced fat and lean mass, and both RAmKO and TSCmKO mice develop insulin resistance and increased intramyocellular lipid content. CONCLUSIONS: Our study shows that alterations of mTORC1 signaling in the skeletal muscle differentially affect whole-body metabolism. While both inhibition and constitutive activation of mTORC1 induce leanness and resistance to obesity, changes in the metabolism of muscle and peripheral organs are distinct. These results indicate that a balanced mTORC1 signaling in the muscle is required for proper metabolic homeostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Complexos Multiproteicos/metabolismo , Músculo Esquelético/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores Etários , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Composição Corporal , Dieta Hiperlipídica , Genótipo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Insulina/sangue , Resistência à Insulina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Knockout , Doenças Musculares/enzimologia , Doenças Musculares/genética , Doenças Musculares/fisiopatologia , Obesidade/enzimologia , Obesidade/genética , Obesidade/prevenção & controle , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Regulatória Associada a mTOR , Transdução de Sinais , Magreza/enzimologia , Magreza/genética , Fatores de Tempo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...