Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(2): 028201, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277585

RESUMO

We show here that soap films-typically expected to host symmetric molecular arrangements-can be constructed with differing opposite surfaces, breaking their symmetry, and making them reminiscent of functional biological motifs found in nature. Using fluorescent molecular probes as dopants on different sides of the film, resonance energy transfer could be employed to confirm the lack of symmetry, which was found to persist on timescales of several minutes. Further, a theoretical analysis of the main transport phenomena involved yielded good agreement with the experimental observations.

2.
Discov Nano ; 18(1): 9, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757508

RESUMO

We focus on a novel concept of photosynthetic soft membranes, possibly able to allow the conversion of solar energy and carbon dioxide (CO[Formula: see text]) into green fuels. The considered membranes rely on self-assembled functional molecules in the form of soap films. We elaborate a multi-scale and multi-physics model to describe the relevant phenomena, investigating the expected performance of a single soft photosynthetic membrane. First, we present a macroscale continuum model, which accounts for the transport of gaseous and ionic species within the soap film, the chemical equilibria and the two involved photocatalytic half reactions of the CO[Formula: see text] reduction and water oxidation at the two gas-surfactant-water interfaces of the soap film. Second, we introduce a mesoscale discrete Monte Carlo model, to deepen the investigation of the structure of the functional monolayers. Finally, the morphological information obtained at the mesoscale is integrated into the continuum model in a multi-scale framework. The developed tools are then used to perform sensitivity studies in a wide range of possible experimental conditions, to provide scenarios on fuel production by such a novel approach.

3.
J Am Chem Soc ; 143(37): 15103-15112, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498857

RESUMO

We study the properties of the interface of water and the surfactant hexaethylene glycol monododecyl ether (C12E6) with a combination of heterodyne-detected vibrational sum frequency generation (HD-VSFG), Kelvin-probe measurements, and molecular dynamics (MD) simulations. We observe that the addition of the hydrogen-bonding surfactant C12E6, close to the critical micelle concentration (CMC), induces a drastic enhancement in the hydrogen bond strength of the water molecules close to the interface, as well as a flip in their net orientation. The mutual orientation of the water and C12E6 molecules leads to the emergence of a broad (∼3 nm) interface with a large electric field of ∼1 V/nm, as evidenced by the Kelvin-probe measurements and MD simulations. Our findings may open the door for the design of novel electric-field-tuned catalytic and light-harvesting systems anchored at the water-surfactant-air interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...