Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 13(6): 561-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22565321

RESUMO

The conserved MRE11­RAD50­NBS1 (MRN) complex is an important sensor of DNA double-strand breaks (DSBs) and facilitates DNA repair by homologous recombination (HR) and end joining. Here, we identify NBS1 as a target of cyclin-dependent kinase (CDK) phosphorylation. We show that NBS1 serine 432 phosphorylation occurs in the S, G2 and M phases of the cell cycle and requires CDK activity. This modification stimulates MRN-dependent conversion of DSBs into structures that are substrates for repair by HR. Impairment of NBS1 phosphorylation not only negatively affects DSB repair by HR, but also prevents resumption of DNA replication after replication-fork stalling. Thus, CDK-mediated NBS1 phosphorylation defines a molecular switch that controls the choice of repair mode for DSBs.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Clivagem do DNA , Replicação do DNA , Recombinação Homóloga , Proteínas Nucleares/metabolismo , Hidrolases Anidrido Ácido , Substituição de Aminoácidos , Proteína Quinase CDC2/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Enzimas Reparadoras do DNA/química , Proteínas de Ligação a DNA/química , Humanos , Proteína Homóloga a MRE11 , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Serina/genética , Serina/metabolismo
2.
J Cell Biol ; 186(5): 655-63, 2009 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-19736316

RESUMO

Homologous recombination (HR) is essential for faithful repair of DNA lesions yet must be kept in check, as unrestrained HR may compromise genome integrity and lead to premature aging or cancer. To limit unscheduled HR, cells possess DNA helicases capable of preventing excessive recombination. In this study, we show that the human Fbh1 (hFbh1) helicase accumulates at sites of DNA damage or replication stress in a manner dependent fully on its helicase activity and partially on its conserved F box. hFbh1 interacted with single-stranded DNA (ssDNA), the formation of which was required for hFbh1 recruitment to DNA lesions. Conversely, depletion of endogenous Fbh1 or ectopic expression of helicase-deficient hFbh1 attenuated ssDNA production after replication block. Although elevated levels of hFbh1 impaired Rad51 recruitment to ssDNA and suppressed HR, its small interfering RNA-mediated depletion increased the levels of chromatin-associated Rad51 and caused unscheduled sister chromatid exchange. Thus, by possessing both pro- and anti-recombinogenic potential, hFbh1 may cooperate with other DNA helicases in tightly controlling cellular HR activity.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genoma Humano , Recombinases/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Dano ao DNA , DNA Helicases/genética , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Interferência de RNA , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinases/genética , Recombinação Genética
3.
J Biol Chem ; 284(7): 4140-7, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19097996

RESUMO

ATR is a protein kinase that orchestrates the cellular response to replication problems and DNA damage. HCLK2 has previously been reported to stabilize ATR and Chk1. Here we provide evidence that human HCLK2 acts at an early step in the ATR signaling pathway and contributes to full-scale activation of ATR kinase activity. We show that HCLK2 forms a complex with ATR-ATRIP and the ATR activator TopBP1. We demonstrate that HCLK2-induced ATR kinase activity toward substrates requires TopBP1 and vice versa and provides evidence that HCLK2 facilitates efficient ATR-TopBP1 association. Consistent with its role in ATR activation, HCLK2 depletion severely impaired phosphorylation of multiple ATR targets including Chk1, Nbs1, and Smc1 after DNA damage. We show that HCLK2 is required for and stimulates ATR autophosphorylation and activity toward different substrates in vitro. Furthermore, HCLK2 depletion abrogated the G(2) checkpoint and decreased survival of cells after exposure to DNA damaging agents and replicative stress. Overall, our data suggest that HCLK2 facilitates ATR activation and, therefore, contributes to ATR-mediated checkpoint signaling. Importantly, our results suggest that HCLK2 functions in the same pathway as TopBP1 but that the two proteins regulate different steps in ATR activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Indução Enzimática/fisiologia , Estabilidade Enzimática/fisiologia , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética
4.
J Cell Biol ; 181(2): 213-26, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18411307

RESUMO

DNA double-strand breaks (DSBs) trigger accumulation of the MRE11-RAD50-Nijmegen breakage syndrome 1 (NBS1 [MRN]) complex, whose retention on the DSB-flanking chromatin facilitates survival. Chromatin retention of MRN requires the MDC1 adaptor protein, but the mechanism behind the MRN-MDC1 interaction is unknown. We show that the NBS1 subunit of MRN interacts with the MDC1 N terminus enriched in Ser-Asp-Thr (SDT) repeats. This interaction was constitutive and mediated by binding between the phosphorylated SDT repeats of MDC1 and the phosphate-binding forkhead-associated domain of NBS1. Phosphorylation of the SDT repeats by casein kinase 2 (CK2) was sufficient to trigger MDC1-NBS1 interaction in vitro, and MDC1 associated with CK2 activity in cells. Inhibition of CK2 reduced SDT phosphorylation in vivo, and disruption of the SDT-associated phosphoacceptor sites prevented the retention of NBS1 at DSBs. Together, these data suggest that phosphorylation of the SDT repeats in the MDC1 N terminus functions to recruit NBS1 and, thereby, increases the local concentration of MRN at the sites of chromosomal breakage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas Nucleares/metabolismo , Oligopeptídeos/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Ósseas , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Clonagem Molecular , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Imuno-Histoquímica , Proteína Homóloga a MRE11 , Proteínas Nucleares/genética , Osteossarcoma , Fragmentos de Peptídeos/metabolismo , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Transativadores/genética
5.
Nat Cell Biol ; 8(1): 37-45, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16327781

RESUMO

It is generally thought that the DNA-damage checkpoint kinases, ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), work independently of one another. Here, we show that ATM and the nuclease activity of meiotic recombination 11 (Mre11) are required for the processing of DNA double-strand breaks (DSBs) to generate the replication protein A (RPA)-coated ssDNA that is needed for ATR recruitment and the subsequent phosphorylation and activation of Chk1. Moreover, we show that efficient ATM-dependent ATR activation in response to DSBs is restricted to the S and G2 cell cycle phases and requires CDK kinase activity. Thus, in response to DSBs, ATR activation is regulated by ATM in a cell-cycle dependent manner.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Ciclo Celular , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA/química , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteína de Replicação A/química , Proteína de Replicação A/metabolismo , Proteínas Supressoras de Tumor/química
6.
Nature ; 434(7033): 605-11, 2005 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15758953

RESUMO

Ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are members of the phosphoinositide-3-kinase-related protein kinase (PIKK) family, and are rapidly activated in response to DNA damage. ATM and DNA-PKcs respond mainly to DNA double-strand breaks, whereas ATR is activated by single-stranded DNA and stalled DNA replication forks. In all cases, activation involves their recruitment to the sites of damage. Here we identify related, conserved carboxy-terminal motifs in human Nbs1, ATRIP and Ku80 proteins that are required for their interaction with ATM, ATR and DNA-PKcs, respectively. These motifs are essential not only for efficient recruitment of ATM, ATR and DNA-PKcs to sites of damage, but are also critical for ATM-, ATR- and DNA-PKcs-mediated signalling events that trigger cell cycle checkpoints and DNA repair. Our findings reveal that recruitment of these PIKKs to DNA lesions occurs by common mechanisms through an evolutionarily conserved motif, and provide direct evidence that PIKK recruitment is required for PIKK-dependent DNA-damage signalling.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Antígenos Nucleares/química , Antígenos Nucleares/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Sequência Conservada , Cricetinae , DNA/genética , DNA/metabolismo , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Autoantígeno Ku , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fosfatidilinositol 3-Quinases/química , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Transdução de Sinais , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética
7.
Exp Cell Res ; 302(2): 162-9, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15561098

RESUMO

When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression.


Assuntos
Inibidores da Topoisomerase I , Inibidores da Topoisomerase II , Fosfatases cdc25/metabolismo , Antibióticos Antineoplásicos/farmacologia , Anticorpos Monoclonais/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/farmacologia , Ciclo Celular , Linhagem Celular Transformada , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Cisplatino/farmacologia , Ciclina E/metabolismo , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Doxorrubicina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Etoposídeo/farmacologia , Citometria de Fluxo , Humanos , Cinética , Osteossarcoma , Paclitaxel/farmacologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Raios Ultravioleta
8.
Oncogene ; 23(52): 8535-44, 2004 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-15361853

RESUMO

The DNA damage checkpoint kinase, CHK2, promotes growth arrest or apoptosis through phosphorylating targets such as Cdc25A, Cdc25C, BRCA1, and p53. Both germline and somatic loss-of-function CHEK2 mutations occur in human tumours, the former linked to the Li-Fraumeni syndrome, and the latter found in diverse types of sporadic malignancies. Here we examined the status of CHK2 by genetic and immunohistochemical analyses in 53 breast carcinomas previously characterized for TP53 status. We identified two CHEK2 mutants, 470T>C (Ile157Thr), and a novel mutation, 1368insA leading to a premature stop codon in exon 13. The truncated protein encoded by CHEK2 carrying the 1368insA was stable yet mislocalized to the cytoplasm in tumour sections and when ectopically expressed in cultured cells. Unexpectedly, we found CHEK2 to be subject to extensive alternative splicing, with some 90 splice variants detected in our tumour series. While all cancers expressed normal-length CHEK2 mRNA together with the spliced transcripts, we demonstrate and/or predict some of these splice variants to lack CHK2 function and/or localize aberrantly. We conclude that cytoplasmic sequestration may represent a novel mechanism to disable CHK2, and propose to further explore the significance of the complex splicing patterns of this tumour suppressor gene in oncogenesis.


Assuntos
Processamento Alternativo , Neoplasias da Mama/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Sequência de Bases , Neoplasias da Mama/metabolismo , Quinase do Ponto de Checagem 2 , Análise Mutacional de DNA , Feminino , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/metabolismo
9.
Int J Cancer ; 111(4): 543-7, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15239132

RESUMO

Cell cycle checkpoint kinase 2 (CHEK2) is a transducer of cellular responses to DNA damage. The CHEK2 1100delC has previously been shown to be a low-penetrance breast cancer susceptibility allele. We have evaluated the role of another CHEK2 variant, I157T in the FHA domain of the gene, for association with breast cancer. I157T was found at a significantly higher frequency in the population-based series of breast cancer patients (77/1035, 7.4%, odds ratio [OR] = 1.43, 95% confidence interval [CI] = 1.06-1.95, p = 0.021) than among population controls (100/1885, 5.3%). The frequency in the familial breast cancer patients was not elevated (28/507, 5.5%, OR = 1.04, 95% CI = 0.68-1.61). The I157T protein, that undermines cellular responses to ionizing radiation and shows deficiency in substrate recognition in vivo, was expressed at normal level in tumor tissues as well as in cultured cells. The I157T protein was stable and it dimerized with the wild-type CHEK2 co-expressed in human cells. These functional properties of the I157T protein suggest that this variant may have negative effect on the pool of normal CHEK2 protein in heterozygous carrier cells by formation of heterodimers with wild-type CHEK2. The I157T variant may be associated with breast cancer risk, but the risk is lower than for 1100delC.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Proteínas Serina-Treonina Quinases/genética , Estudos de Casos e Controles , Quinase do Ponto de Checagem 2 , Dano ao DNA , Replicação do DNA , Feminino , Genes Supressores de Tumor , Humanos , Imuno-Histoquímica , Razão de Chances , Tolerância a Radiação
10.
EMBO J ; 23(13): 2674-83, 2004 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15201865

RESUMO

Mdc1/NFBD1 controls cellular responses to DNA damage, in part via interacting with the Mre11-Rad50-Nbs1 complex that is involved in the recognition, signalling, and repair of DNA double-strand breaks (DSBs). Here, we show that in live human cells, the transient interaction of Nbs1 with DSBs and its phosphorylation by ATM are Mdc1-independent. However, ablation of Mdc1 by siRNA or mutation of the Nbs1's FHA domain required for Mdc1 binding reduced the affinity of Nbs1 for DSB-flanking chromatin and caused aberrant pan-nuclear dispersal of Nbs1. This occurred despite normal phosphorylation of H2AX, indicating that lack of Mdc1 does not impair this DSB-induced chromatin change, but rather precludes the sustained engagement of Nbs1 with these regions. Mdc1 (but not Nbs1) became partially immobilized to chromatin after DSB generation, and siRNA-mediated depletion of H2AX prevented such relocalization of Mdc1 and uncoupled Nbs1 from DSB-flanking chromatin. Our data suggest that Mdc1 functions as an H2AX-dependent interaction platform enabling a switch from transient, Mdc1-independent recruitment of Nbs1 to DSBs towards sustained, Mdc1-dependent interactions with the surrounding chromosomal microenvironment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Anticorpos Monoclonais/metabolismo , Proteínas de Ciclo Celular/química , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Imunofluorescência , Corantes Fluorescentes , Humanos , Hidrazinas , Microscopia Confocal , Proteínas Nucleares/química , Osteossarcoma/patologia , Fosfoproteínas/metabolismo , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo
11.
Oncogene ; 23(17): 3122-7, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15048089

RESUMO

The ATM kinase is a tumour suppressor and a key activator of genome integrity checkpoints in mammalian cells exposed to ionizing radiation (IR) and other insults that elicit DNA double-strand breaks (DSBs). In response to IR, autophosphorylation on serine 1981 causes dissociation of ATM dimers and initiates cellular ATM kinase activity. Here, we show that the kinetics and magnitude of ATM Ser1981 phosphorylation after exposure of human fibroblasts to low doses (2 Gy) of IR are altered in cells deficient in Nbs1, a substrate of ATM and a component of the MRN (Mre11-Rad50-Nbs1) complex involved in processing/repair of DSBs and ATM-dependent cell cycle checkpoints. Timely phosphorylation of both ATM Ser1981 and the ATM substrate Smc1 after IR were rescued via retrovirally mediated reconstitution of Nbs1-deficient cells by wild-type Nbs1 or mutants of Nbs1 defective in the FHA domain or nonphosphorylatable by ATM, but not by Nbs1 lacking the Mre11-interaction domain. Our data indicate that apart from its role downstream of ATM in the DNA damage checkpoint network, the MRN complex serves also as a modulator/amplifier of ATM activity. Although not absolutely required for ATM activation, the MRN nuclease complex may help reach the threshold activity of ATM necessary for optimal genome maintenance and prevention of cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/efeitos da radiação , Ataxia Telangiectasia , Proteínas Mutadas de Ataxia Telangiectasia , Sítios de Ligação , Proteínas de Ciclo Celular/química , Sobrevivência Celular , Dano ao DNA/genética , Proteínas de Ligação a DNA , Amplificação de Genes , Humanos , Cinética , Neoplasias/genética , Neoplasias/prevenção & controle , Proteínas Nucleares/química , Fosforilação , Fosfosserina/metabolismo , Radiação Ionizante , Proteínas Supressoras de Tumor
12.
Cancer Cell ; 3(3): 247-58, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12676583

RESUMO

Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.


Assuntos
Ciclo Celular/fisiologia , Proteínas Quinases/metabolismo , Fosfatases cdc25/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA , Ativação Enzimática , Células HeLa , Humanos , Cinética , Modelos Biológicos , Fosforilação , Proteínas Serina-Treonina Quinases/fisiologia , Radiação Ionizante , Fase S/efeitos da radiação , Serina/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor , Fosfatases cdc25/efeitos da radiação
13.
Nat Cell Biol ; 5(3): 255-60, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12598907

RESUMO

Cell cycle checkpoints are signal transduction pathways activated after DNA damage to protect genomic integrity. Dynamic spatiotemporal coordination is a vital, but poorly understood aspect, of these checkpoints. Here, we provide evidence for a strikingly different behaviour of Chk2 versus Nbs1, key mediators of the ataxia-telangiecatesia-mutated (ATM)-controlled checkpoint pathways induced by DNA double-strand breaks (DSBs). In live human cells with DSBs restricted to small sub-nuclear areas, Nbs1 was rapidly recruited to the damaged regions and underwent a dynamic exchange in the close vicinity of the DSB sites. In contrast, Chk2 continued to rapidly move throughout the entire nucleus, irrespective of DNA damage and including the DSB-free areas. Although phosphorylation of Chk2 by ATM occurred exclusively at the DSB sites, forced immobilization of Chk2 to spatially restricted, DSB-containing nuclear areas impaired its stimulating effect on p53-dependent transcription. These results unravel a dynamic nature of Nbs1 interaction with DSB lesions and identify Chk2 as a candidate transmitter of the checkpoint signal, allowing for a coordinated pan-nuclear response to focal DNA damage.


Assuntos
Ciclo Celular/genética , Dano ao DNA , Proteínas de Ciclo Celular/fisiologia , Humanos , Fosforilação , Células Tumorais Cultivadas
14.
J Biol Chem ; 278(17): 14806-11, 2003 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-12588868

RESUMO

In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Quinase 1 do Ponto de Checagem , Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA , Fase G2/efeitos da radiação , Humanos , Fosforilação/efeitos da radiação , Proteínas Quinases/fisiologia , Proteínas Quinases/efeitos da radiação , Radiação Ionizante , Fase S/efeitos da radiação , Serina/metabolismo , Proteínas Supressoras de Tumor
15.
Nature ; 421(6926): 952-6, 2003 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-12607003

RESUMO

MRE11, RAD50 and NBS1 form a highly conserved protein complex (the MRE11 complex) that is involved in the detection, signalling and repair of DNA damage. We identify MDC1 (KIAA0170/NFBD1), a protein that contains a forkhead-associated (FHA) domain and two BRCA1 carboxy-terminal (BRCT) domains, as a binding partner for the MRE11 complex. We show that, in response to ionizing radiation, MDC1 is hyperphosphorylated in an ATM-dependent manner, and rapidly relocalizes to nuclear foci that also contain the MRE11 complex, phosphorylated histone H2AX and 53BP1. Downregulation of MDC1 expression by small interfering RNA yields a radio-resistant DNA synthesis (RDS) phenotype and prevents ionizing radiation-induced focus formation by the MRE11 complex. However, downregulation of MDC1 does not abolish the ionizing radiation-induced phosphorylation of NBS1, CHK2 and SMC1, or the degradation of CDC25A. Furthermore, we show that overexpression of the MDC1 FHA domain interferes with focus formation by MDC1 itself and by the MRE11 complex, and induces an RDS phenotype. These findings reveal that MDC1-mediated focus formation by the MRE11 complex at sites of DNA damage is crucial for the efficient activation of the intra-S-phase checkpoint.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases , Fase S , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quinase do Ponto de Checagem 2 , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA/efeitos da radiação , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/química , Humanos , Proteína Homóloga a MRE11 , Camundongos , Proteínas Nucleares/química , Fosforilação/efeitos da radiação , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Radiação Ionizante , Fase S/efeitos da radiação , Transativadores/química , Células Tumorais Cultivadas , Fosfatases cdc25/metabolismo
16.
Nat Genet ; 30(3): 290-4, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11850621

RESUMO

To preserve genetic integrity, mammalian cells exposed to ionizing radiation activate the ATM kinase, which initiates a complex response-including the S-phase checkpoint pathways-to delay DNA replication. Defects in ATM or its substrates Nbs1 or Chk2 (ref. 3), the Nbs1-interacting Mre11 protein, or the Chk2-regulated Cdc25A-Cdk2 cascade all cause radio-resistant DNA synthesis (RDS). It is unknown, however, whether these proteins operate in a common signaling cascade. Here we show that experimental blockade of either the Nbs1-Mre11 function or the Chk2-triggered events leads to a partial RDS phenotype in human cells. In contrast, concomitant interference with Nbs1-Mre11 and the Chk2-Cdc25A-Cdk2 pathways entirely abolishes inhibition of DNA synthesis induced by ionizing radiation, resulting in complete RDS analogous to that caused by defective ATM. In addition, Cdk2-dependent loading of Cdc45 onto replication origins, a prerequisite for recruitment of DNA polymerase, was prevented upon irradiation of normal or Nbs1/Mre11-defective cells but not cells with defective ATM. We conclude that in response to ionizing radiation, phosphorylations of Nbs1 and Chk2 by ATM trigger two parallel branches of the DNA damage-dependent S-phase checkpoint that cooperate by inhibiting distinct steps of DNA replication.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Dano ao DNA , Fase S/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular , Linhagem Celular , Quinase do Ponto de Checagem 2 , Quinase 2 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Proteínas de Ligação a DNA , Humanos , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Radiação Ionizante , Proteínas Supressoras de Tumor , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...