Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transfusion ; 57(2): 412-422, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27861998

RESUMO

BACKGROUND: Hyperimmunoglobulins are frequently applied for prophylaxis and treatment of human cytomegalovirus (HCMV) infections but were only marginally effective in meta-analyses of clinical studies. This might be partially due to selection of donors rather for total anti-HCMV titers than for neutralizing capacities. To improve efficacy against HCMV infection, we aimed at developing a high-throughput screening method for identification of blood donors with highly and broadly neutralizing capacities. STUDY DESIGN AND METHODS: Using a Gaussia luciferase-expressing reporter virus, 1000 HCMV immunoglobulin (Ig)G-positive plasma samples with known anti-HCMV immunoglobulin titers were analyzed regarding their neutralization titers against fibroblast and endothelial cell infection. Based on these results, a high-throughput screening was designed. Highly neutralizing plasma samples were further tested 1) by an enzyme-linked immunosorbent assay-based neutralization assay regarding efficiency against different HCMV strains and 2) for their efficiency compared to commercially available hyperimmunoglobulins. RESULTS: Total anti-HCMV immunoglobulin titers did not correlate with neutralization. Mean neutralization capacities were 15-fold higher in endothelial cells compared to fibroblasts. All plasma samples neutralizing fibroblast infection were at least equally effective against infection of endothelial cells, providing the possibility to simplify our screening method by testing only fibroblasts as target cells with a plasma dilution of 1 in 400. Of the nine tested top HCMV neutralizers, four were broadly effective against different HCMV strains. All nine were significantly superior to hyperimmunoglobulins. CONCLUSION: Donors with highly and broadly neutralizing capacities can be identified by a two-step high-throughput screening approach. This may provide a basis for improved antibody-based treatment or prophylaxis of HCMV infections.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Doadores de Sangue , Infecções por Citomegalovirus , Citomegalovirus , Seleção do Doador/métodos , Imunoglobulina G , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Linhagem Celular Transformada , Citomegalovirus/imunologia , Citomegalovirus/metabolismo , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Masculino
2.
J Virol Methods ; 235: 182-189, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326666

RESUMO

For many questions in human cytomegalovirus (HCMV) research, assays are desired that allow robust and fast quantification of infection efficiencies under high-throughput conditions. The secreted Gaussia luciferase has been demonstrated as a suitable reporter in the context of a fibroblast-adapted HCMV strain, which however is greatly restricted in the number of cell types to which it can be applied. We inserted the Gaussia luciferase expression cassette into the BAC-cloned virus strain TB40-BAC4, which displays the natural broad cell tropism of HCMV and hence allows application to screening approaches in a variety of cell types including fibroblasts, epithelial, and endothelial cells. Here, we applied the reporter virus TB40-BAC4-IE-GLuc to identify mouse hybridoma clones that preferentially neutralize infection of endothelial cells. In addition, as the Gaussia luciferase is secreted into culture supernatants from infected cells it allows kinetic analyses in living cultures. This can speed up and facilitate phenotypic characterization of BAC-cloned mutants. For example, we analyzed a UL74 stop-mutant of TB40-BAC4-IE-GLuc immediately after reconstitution in transfected cultures and found the increase of luciferase delayed and reduced as compared to wild type. Phenotypic monitoring directly in transfected cultures can minimize the risk of compensating mutations that might occur with extended passaging.


Assuntos
Citomegalovirus/genética , Luciferases/genética , Luciferases/metabolismo , Mutação , Virologia/métodos , Animais , Copépodes/enzimologia , Células Endoteliais/virologia , Fibroblastos/virologia , Genes Reporter , Genoma Viral , Humanos , Luciferases/química , Luciferases/isolamento & purificação , Glicoproteínas de Membrana , Camundongos , Mutagênese , Proteínas do Envelope Viral/genética , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA