Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33468467

RESUMO

Negamycin is a natural pseudodipeptide antibiotic with promising activity against Gram-negative and Gram-positive bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Staphylococcus aureus, and good efficacy in infection models. It binds to ribosomes with a novel binding mode, stimulating miscoding and inhibiting ribosome translocation. We were particularly interested in studying how the small, positively charged natural product reaches its cytoplasmic target in Escherichia coli Negamycin crosses the cytoplasmic membrane by multiple routes depending on environmental conditions. In a peptide-free medium, negamycin uses endogenous peptide transporters for active translocation, preferentially the dipeptide permease Dpp. However, in the absence of functional Dpp or in the presence of outcompeting nutrient peptides, negamycin can still enter the cytoplasm. We observed a contribution of the DppA homologs SapA and OppA, as well as of the proton-dependent oligopeptide transporter DtpD. Calcium strongly improves the activity of negamycin against both Gram-negative and Gram-positive bacteria, especially at concentrations around 2.5 mM, reflecting human blood levels. Calcium forms a complex with negamycin and facilitates its interaction with negatively charged phospholipids in bacterial membranes. Moreover, decreased activity at acidic pH and under anaerobic conditions points to a role of the membrane potential in negamycin uptake. Accordingly, improved activity at alkaline pH could be linked to increased uptake of [3H]negamycin. The diversity of options for membrane translocation is reflected by low resistance rates. The example of negamycin demonstrates that membrane passage of antibiotics can be multifaceted and that for cytoplasmic anti-Gram-negative drugs, understanding of permeation and target interaction are equally important.


Assuntos
Diamino Aminoácidos , Antibacterianos , Antibacterianos/farmacologia , Membrana Celular , Escherichia coli/genética , Humanos
2.
Antimicrob Agents Chemother ; 59(2): 772-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25403671

RESUMO

Oritavancin is a semisynthetic derivative of the glycopeptide antibiotic chloroeremomycin with activity against Gram-positive pathogens, including vancomycin-resistant staphylococci and enterococci. Compared to vancomycin, oritavancin is characterized by the presence of two additional residues, a hydrophobic 4'-chlorobiphenyl methyl moiety and a 4-epi-vancosamine substituent, which is also present in chloroeremomycin. Here, we show that oritavancin and its des-N-methylleucyl variant (des-oritavancin) effectively inhibit lipid I- and lipid II-consuming peptidoglycan biosynthesis reactions in vitro. In contrast to that for vancomycin, the binding affinity of oritavancin to the cell wall precursor lipid II appears to involve, in addition to the D-Ala-D-Ala terminus, other species-specific binding sites of the lipid II molecule, i.e., the crossbridge and D-isoglutamine in position 2 of the lipid II stem peptide, both characteristic for a number of Gram-positive pathogens, including staphylococci and enterococci. Using purified lipid II and modified lipid II variants, we studied the impact of these modifications on the binding of oritavancin and compared it to those of vancomycin, chloroeremomycin, and des-oritavancin. Analysis of the binding parameters revealed that additional intramolecular interactions of oritavancin with the peptidoglycan precursor appear to compensate for the loss of a crucial hydrogen bond in vancomycin-resistant strains, resulting in enhanced binding affinity. Augmenting previous findings, we show that amidation of the lipid II stem peptide predominantly accounts for the increased binding of oritavancin to the modified intermediates ending in D-Ala-D-Lac. Corroborating our conclusions, we further provide biochemical evidence for the phenomenon of the antagonistic effects of mecA and vanA resistance determinants in Staphylococcus aureus, thus partially explaining the low frequency of methicillin-resistant S. aureus (MRSA) acquiring high-level vancomycin resistance.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Glicopeptídeos/química , Glicopeptídeos/farmacologia , Enterococcus faecium/química , Lipoglicopeptídeos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
3.
Sensors (Basel) ; 13(9): 12392-405, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24064603

RESUMO

Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW) biosensor SAM®5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM®5 blue in biomedical sciences.


Assuntos
Biomimética/instrumentação , Técnicas Biossensoriais/instrumentação , Imunoensaio/instrumentação , Bicamadas Lipídicas/química , Membranas Artificiais , Sistemas Microeletromecânicos/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Int J Antimicrob Agents ; 37(3): 256-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21306875

RESUMO

Friulimicin is a cyclic lipopeptide antibiotic, currently in clinical development, that possesses excellent activity against Gram-positive bacteria, including multiresistant strains. A recent study on the mode of action of friulimicin reported on the interference with bacterial cell wall biosynthesis via a calcium-dependent complexing of the bactoprenol phosphate carrier C55-P. The calcium dependency of this non-common targeted activity remains to be elucidated. In the present model membrane approach, the role of calcium for friulimicin targeting to C55-P was investigated by biosensor-based detection of binding affinities. The findings were supplemented by atomic force microscopy (AFM) and circular dichroism (CD) spectroscopy. Comparing the calcium salt of friulimicin with the calcium-free peptide, calcium appeared to be essential for friulimicin interaction with DOPC model membranes. The binding affinity was even higher in the presence of 0.1 mol% C55-P (0.21 µM vs. 1.22 µM), confirming the targeted mode of action. Binding experiments with supplemented calcium salts suggest (i) the phosphate group as the essential moiety of C55-P, referring to a bridging function of calcium between the negatively charged friulimicin and C55-P, and (ii) a structural effect of calcium shifting the peptide into a suitable binding conformation (CD spectra). AFM images confirmed that calcium has no, or only a minor, effect on the aggregate formation of friulimicin. These data shed new light on the mechanisms of antibacterial activity of friulimicin.


Assuntos
Antibacterianos/farmacologia , Cálcio/metabolismo , Parede Celular/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos Catiônicos Antimicrobianos , Técnicas Biossensoriais , Membrana Celular/química , Parede Celular/metabolismo , Dicroísmo Circular , Descoberta de Drogas , Bactérias Gram-Positivas/metabolismo , Microscopia de Força Atômica , Estrutura Molecular , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , Conformação Proteica , Análise Espectral
5.
Plant J ; 34(6): 847-55, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12795704

RESUMO

Benzophenone derivatives, such as polyprenylated benzoylphloroglucinols and xanthones, are biologically active secondary metabolites. The formation of their C13 skeleton is catalyzed by benzophenone synthase (BPS; EC 2.3.1.151) that has been cloned from cell cultures of Hypericum androsaemum. BPS is a novel member of the superfamily of plant polyketide synthases (PKSs), also termed type III PKSs, with 53-63% amino acid sequence identity. Heterologously expressed BPS was a homodimer with a subunit molecular mass of 42.8 kDa. Its preferred starter substrate was benzoyl-CoA that was stepwise condensed with three malonyl-CoAs to give 2,4,6-trihydroxybenzophenone. BPS did not accept activated cinnamic acids as starter molecules. In contrast, recombinant chalcone synthase (CHS; EC 2.3.1.74) from the same cell cultures preferentially used 4-coumaroyl-CoA and also converted CoA esters of benzoic acids. The enzyme shared 60.1% amino acid sequence identity with BPS. In a phylogenetic tree, the two PKSs occurred in different clusters. One cluster was formed by CHSs including the one from H. androsaemum. BPS grouped together with the PKSs that functionally differ from CHS. Site-directed mutagenesis of amino acids shaping the initiation/elongation cavity of CHS yielded a triple mutant (L263M/F265Y/S338G) that preferred benzoyl-CoA over 4-coumaroyl-CoA.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Carbono-Carbono Ligases/genética , Carbono-Carbono Ligases/metabolismo , Hypericum/enzimologia , Hypericum/genética , Mutagênese Sítio-Dirigida , Aciltransferases/química , Sequência de Aminoácidos , Benzofenonas/metabolismo , Carbono-Carbono Ligases/química , Células Cultivadas , Clonagem Molecular , DNA Complementar/genética , Expressão Gênica , Cinética , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...