Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 232: 106487, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487295

RESUMO

Bluetongue (BT) is an infectious, arthropod-borne viral disease of domestic and wild ruminants. The disease causes animal mortality, production decrease and commercial limits for herds. Despite the active circulation of the disease in the world, few studies have been carried out in Senegal. The objective of this study was to assess the current prevalence of BT in small ruminants and the serotypes circulating in Senegal. A cross-sectional study was conducted in the fourteen regions of Senegal. After the sampling campaign, sera collected in sheep and goats herds were screened for the presence of Bluetongue virus (BTV) specific antibodies using c-Elisa. The whole blood of seropositive animals was further analyzed by RT-qPCR and positive samples were typed to identify BTV serotypes. Analysis of several risk factors such as age, sex and species of animals was performed using logistic regression. The overall seroprevalence of BTV in Senegal was 72.6% (95% CI: 70.3-74.9%) with 75.9% (95% CI: 72.2-79.5%) in goat and 70.6% (95% CI: 67.5-73.6%) in sheep. Female (prevalence=77.1%) and adult (prevalence=80%) animals showed the highest seropositivity to BTV compared respectively to male (55.7%, p=6.133e-09) and young (49.4%, p < 2.2e-16). The RT-qPCR results showed the presence of BT viral genome in 359 small ruminants. The results obtained from serological and genotyping studies showed an active spread of the Bluetongue virus in domestic ruminants and phylogenetic analysis showed that the BTV-2 is one of the circulating serotypes in Senegal. This study allows having baseline information for controlling Bluetongue in Senegal.


Assuntos
Vírus Bluetongue , Bluetongue , Doenças das Cabras , Animais , Anticorpos Antivirais , Bluetongue/epidemiologia , Estudos Transversais , Feminino , Doenças das Cabras/epidemiologia , Cabras , Masculino , Filogenia , Ruminantes , Senegal/epidemiologia , Estudos Soroepidemiológicos , Ovinos
2.
Microorganisms ; 8(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187059

RESUMO

Bluetongue is a non-contagious viral disease affecting small ruminants and cattle that can cause severe economic losses in the livestock sector. The virus is transmitted by certain species of the genus Culicoides and consequently, understanding their distribution is essential to enable the identification of high-risk transmission areas. In this work we use bioclimatic and environmental variables to predict vector abundance, and estimate spatial variations in the basic reproductive ratio  R0. The resulting estimates were combined with livestock mobility and serological data to assess the risk of Bluetongue outbreaks in Senegal. The results show an increasing abundance of C. imicola, C. oxystoma, C. enderleini, and C. miombo from north to south. R0 < 1 for most areas of Senegal, whilst southern (Casamance) and southeastern (Kedougou and part of Tambacounda) agro-pastoral areas have the highest risk of outbreak (R0 = 2.7 and 2.9, respectively). The next higher risk areas are in the Senegal River Valley (R0 = 1.07), and the Atlantic coast zones. Seroprevalence rates, shown by cELISA, weren't positively correlated with outbreak probability. Future works should include follow-up studies of competent vector abundancies and serological surveys based on the results of the risk analysis conducted here to optimize the national epidemiological surveillance system.

3.
BMC Ecol ; 19(1): 45, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676006

RESUMO

BACKGROUND: Vector-borne diseases are among the leading causes of morbidity and mortality in humans and animals. In the Afrotropical region, some are transmitted by Culicoides, such as Akabane, bluetongue, epizootic haemorrhagic fever and African horse sickness viruses. Bluetongue virus infection has an enormous impact on ruminant production, due to its high morbidity and mortality rates. METHODS: A nationwide Culicoides trapping campaign was organized at the end of the 2012 rainy season in Senegal. A Maximum Entropy approach (MaxEnt), Boosted Regression Tree (BRT) method and Ecological Niche Factor Analysis (ENFA) were used to develop a predictive spatial model for the distribution of Culicoides, using bio-climatic variables, livestock densities and altitude. RESULTS: The altitude, maximum temperature of the warmest month, precipitation of the warmest quarter, mean temperature of the wettest quarter, temperature seasonality, precipitation of the wettest quarter and livestock density were among the most important factors to predict suitable habitats of Culicoides. Culicoides occurrences were, in most of the cases, positively correlated to precipitation variables and livestock densities; and negatively correlated to the altitude and temperature indices. The Niayes area and the Groundnut basin were the most suitable habitats predicted. CONCLUSION: We present ecological niche models for different Culicoides species, namely C. imicola, C. oxystoma, C. enderleini and C. miombo, potential vectors of bluetongue virus, on a nationwide scale in Senegal. Through our modelling approach, we were able to determine the effect of bioclimatic variables on Culicoides habitats and were able to generate maps for the occurrence of Culicoides species. This information will be helpful in developing risk maps for disease outbreaks.


Assuntos
Vírus Bluetongue , Ceratopogonidae , Animais , Ecossistema , Insetos Vetores , Senegal
4.
Parasit Vectors ; 11(1): 615, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509304

RESUMO

BACKGROUND: Biting midge species of the genus Culicoides Latreille (Diptera: Ceratopogonidae) comprise more than 1300 species distributed worldwide. Several species of Culicoides are vectors of various viruses that can affect animals, like the African horse sickness virus (AHSV), known to be endemic in sub-Saharan Africa. The ecological and veterinary interest of Culicoides emphasizes the need for rapid and reliable identification of vector species. However, morphology-based identification has limitations and warrants integration of molecular data. DNA barcoding based on the mitochondrial gene cytochrome c oxidase subunit 1 (cox1) is used as a rapid and authentic tool for species identification in a wide variety of animal taxa across the globe. In this study, our objectives were as follows: (i) establish a reference DNA barcode for Afrotropical Culicoides species; (ii) assess the accuracy of cox1 in identifying Afrotropical Culicoides species; and (iii) test the applicability of DNA barcoding for species identification on a large number of samples of Culicoides larvae from the Niayes area of Senegal, West Africa. RESULTS: A database of 230 cox1 sequences belonging to 42 Afrotropical Culicoides species was found to be reliable for species-level assignments, which enabled us to identify cox1 sequences of Culicoides larvae from the Niayes area of Senegal. Of the 933 cox1 sequences of Culicoides larvae analyzed, 906 were correctly identified by their barcode sequences corresponding to eight species of Culicoides. A total of 1131 cox1 sequences of adult and larval Culicoides were analyzed, and a hierarchical increase in mean divergence was observed according to two taxonomic levels: within species (mean = 1.92%, SE = 0.00), and within genus (mean = 17.82%, SE = 0.00). CONCLUSIONS: Our study proves the efficiency of DNA barcoding for studying Culicoides larval diversity in field samples. Such a diagnostic tool offers great opportunities for investigating Culicoides immature stages ecology and biology, a prerequisite for the implementation of eco-epidemiological studies to better control AHSV in the Niayes region of Senegal, and more generally in sub-Saharan Africa.


Assuntos
Ceratopogonidae/classificação , Código de Barras de DNA Taxonômico , Insetos Vetores/classificação , Larva/classificação , Animais , Biodiversidade , Ceratopogonidae/genética , Ciclo-Oxigenase 1/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Larva/genética , Senegal
5.
Parasit Vectors ; 11(1): 341, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884209

RESUMO

BACKGROUND: In Senegal, the last epidemic of African horse sickness (AHS) occurred in 2007. The western part of the country (the Niayes area) concentrates modern farms with exotic horses of high value and was highly affected during the 2007 outbreak that has started in the area. Several studies were initiated in the Niayes area in order to better characterize Culicoides diversity, ecology and the impact of environmental and climatic data on dynamics of proven and suspected vectors. The aims of this study are to better understand the spatial distribution and diversity of Culicoides in Senegal and to map their abundance throughout the country. METHODS: Culicoides data were obtained through a nationwide trapping campaign organized in 2012. Two successive collection nights were carried out in 96 sites in 12 (of 14) regions of Senegal at the end of the rainy season (between September and October) using OVI (Onderstepoort Veterinary Institute) light traps. Three different modeling approaches were compared: the first consists in a spatial interpolation by ordinary kriging of Culicoides abundance data. The two others consist in analyzing the relation between Culicoides abundance and environmental and climatic data to model abundance and investigate the environmental suitability; and were carried out by implementing generalized linear models and random forest models. RESULTS: A total of 1,373,929 specimens of the genus Culicoides belonging to at least 32 different species were collected in 96 sites during the survey. According to the RF (random forest) models which provided better estimates of abundances than Generalized Linear Models (GLM) models, environmental and climatic variables that influence species abundance were identified. Culicoides imicola, C. enderleini and C. miombo were mostly driven by average rainfall and minimum and maximum normalized difference vegetation index. Abundance of C. oxystoma was mostly determined by average rainfall and day temperature. Culicoides bolitinos had a particular trend; the environmental and climatic variables above had a lesser impact on its abundance. RF model prediction maps for the first four species showed high abundance in southern Senegal and in the groundnut basin area, whereas C. bolitinos was present in southern Senegal, but in much lower abundance. CONCLUSIONS: Environmental and climatic variables of importance that influence the spatial distribution of species abundance were identified. It is now crucial to evaluate the vector competence of major species and then combine the vector densities with densities of horses to quantify the risk of transmission of AHS virus across the country.


Assuntos
Doença Equina Africana/transmissão , Bluetongue/transmissão , Ceratopogonidae/fisiologia , Doenças dos Cavalos/transmissão , Insetos Vetores/fisiologia , Doença Equina Africana/epidemiologia , Doença Equina Africana/virologia , Vírus da Doença Equina Africana/genética , Vírus da Doença Equina Africana/isolamento & purificação , Vírus da Doença Equina Africana/fisiologia , Distribuição Animal , Animais , Bluetongue/epidemiologia , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/isolamento & purificação , Vírus Bluetongue/fisiologia , Ceratopogonidae/virologia , Ecossistema , Cavalos , Insetos Vetores/virologia , Modelos Estatísticos , Estações do Ano , Senegal/epidemiologia
6.
Parasit Vectors ; 11(1): 27, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316967

RESUMO

BACKGROUND: Many zoonotic infectious diseases have emerged and re-emerged over the last two decades. There has been a significant increase in vector-borne diseases due to climate variations that lead to environmental changes favoring the development and adaptation of vectors. This study was carried out to improve knowledge of the ecology of mosquito vectors involved in the transmission of Rift Valley fever virus (RVFV) in Senegal. METHODS: An entomological survey was conducted in three Senegalese agro-systems, Senegal River Delta (SRD), Senegal River Valley (SRV) and Ferlo, during the rainy season (July to November) of 2014 and 2015. Mosquitoes were trapped using CDC light traps set at ten sites for two consecutive nights during each month of the rainy season, for a total of 200 night-traps. Ecological indices were calculated to characterize the different populations of RVFV mosquito vectors. Generalized linear models with mixed effects were used to assess the influence of climatic conditions on the abundance of RVFV mosquito vectors. RESULTS: A total of 355,408 mosquitoes belonging to 7 genera and 35 species were captured in 200 night-traps. RVFV vectors represented 89.02% of the total, broken down as follows: Ae. vexans arabiensis (31.29%), Cx. poicilipes (0.6%), Cx. tritaeniorhynchus (33.09%) and Ma. uniformis (24.04%). Comparison of meteorological indices (rainfall, temperature, relative humidity), abundances and species diversity indicated that there were no significant differences between SRD and SRV (P = 0.36) while Ferlo showed significant differences with both (P < 0.001). Mosquito collection increased significantly with temperature for Ae. vexans arabiensis (P < 0.001), Cx. tritaeniorhynchus (P = 0.04) and Ma. uniformis (P = 0.01), while Cx. poicilipes decreased (P = 0.003). Relative humidity was positively and significantly associated with the abundances of Ae. vexans arabiensis (P < 0.001), Cx. poicilipes (P = 0.01) and Cx. tritaeniorhynchus (P = 0.007). Rainfall had a positive and significant effect on the abundances of Ae. vexans arabiensis (P = 0.005). The type of biotope (temporary ponds, river or lake) around the trap points had a significant effect on the mosquito abundances (P < 0.001). CONCLUSIONS: In terms of species diversity, the SRD and SRV ecosystems are similar to each other and different from that of Ferlo. Meteorological indices and the type of biotope (river, lake or temporary pond) have significant effects on the abundance of RVFV mosquito vectors.


Assuntos
Biodiversidade , Culicidae/crescimento & desenvolvimento , Mosquitos Vetores/crescimento & desenvolvimento , Dinâmica Populacional , Animais , Culicidae/classificação , Entomologia/métodos , Umidade , Mosquitos Vetores/classificação , Estações do Ano , Senegal , Temperatura , Tempo (Meteorologia)
7.
Egypt Heart J ; 69(1): 75-80, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29622958

RESUMO

Behçet'sdisease (BD) is a chronic, multisystem vasculitis. It is categorized under variable vessel vasculitis in the new Chapel Hill nomenclature as it involves blood vessels of any type and size. It is characterized by relapsing aphthous ulcers commonly occurring in the oral mucosa and genitalia with ocular involvement. Other organ systems may be involved any time throughout the course of the disease. The exact cause is unknown. However, combination of genetic and environmental factors is likely to play a role. Cardiac involvement may occur in the form of intracardiac thrombus, endocarditis, myocarditis, pericarditis, endomyocardial fibrosis, coronary arteritis, myocardial infarction, and valvular disease. We present a case of Angio-Behçet in a 46-year-old African male with severe cardiovascular involvement including pulmonary artery hypertension (PAH), right ventricular failure and left ventricular diastolic dysfunction diagnosed after 2 episodes of symptomatic ischemic stroke resulting from complete occlusion of the right internal carotid artery (ICA) up to its intracranial portion. Immunosuppressive and anticoagulant therapies have induced improvement in cardiac manifestations. Nevertheless, prompt recognition of the primarily vascular manifestation of BD without mucocutaneous manifestations was responsible for considerable delay that did not afford surgical therapy for the carotid occlusion.

8.
Egypt Heart J ; 69(4): 229-234, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29622982

RESUMO

BACKGROUND: Since the discovery of the ABO blood group system by Karl Landsteiner in 1901, several reports have suggested an important involvement of the ABO blood group system in the susceptibility to thrombosis. Assessing that non-O blood groups in particular A blood group confer a higher risk of venous and arterial thrombosis than group O.Epidemiologic data are typically not available for all racial and ethnics groups.The purpose of this pilot study was to identify a link between ABO blood group and ischemic disease (ID) in Africans, and to analyze whether A blood group individuals were at higher risk of ischemic disease or not. METHODS: A total of 299 medical records of patients over a three-year period admitted to the cardiology and internal medicine department of military hospital of Ouakam in Senegal were reviewed. We studied data on age, gender, past history of hypertension, diabetes, smoking, sedentarism, obesity, hyperlipidemia, use of estrogen-progestin contraceptives and blood group distribution.In each blood group type, we evaluated the prevalence of ischemic and non-ischemic cardiovascular disease. The medical records were then stratified into two categories to evaluate incidence of ischemic disease: Group 1: Patients carrying blood-group A and Group 2: Patients carrying blood group non-A (O, AB and B). RESULTS: Of the 299 patients whose medical records were reviewed, 92 (30.8%) were carrying blood group A, 175 (58.5%) had blood group O, 13 (4.3%) had blood group B, and 19 (6.4%) had blood group AB.The diagnosis of ischemic disease (ID) was higher in patients with blood group A (61.2%) than in other blood groups, and the diagnosis of non-ischemic disease (NID) was higher in patients with blood group O (73.6%) compared to other groups. In patients with blood group B or AB compared to non-B or non-AB, respectively there was no statistically significant difference in ID incidence.Main risk factor for ID was smoking (56.5%), hypertension (18.4%) and diabetes (14.3%).In our study, there was no statistical difference between blood group A and non-A in myocardial infarction (MI) incidence (p = 0.09, 95% CI = 0.99-2.83) but a statistically significant difference between blood group A and non-A in stroke and coronary artery disease (CAD) incidence (p < 0.0001, 95% CI = 1.80-3.37 and p < 0.0001 95% CI = 1.82-3.41 respectively) was found.The incidence of ID in men was significantly higher in blood group A (95% CI = 2.26-4.57, p < 0.0001) compared with non-A group, while there was no statistically significant difference in women (p = 0.35). However, an overall effect was detected to be statistically significant regardless of gender (p < 0.0001). CONCLUSION: Our study suggests an association between blood group A and ID in sub-Sahara Africans.In African countries, where most of health facilities are understaffed, more rigorous studies with a larger population are needed to give a high level of evidence to confirm this association in order to establish the need to be more aggressive in risk factor control in these individuals.

9.
Parasit Vectors ; 9: 462, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549191

RESUMO

BACKGROUND: Certain biting midges species of the genus Culicoides (Diptera: Ceratopogonidae) are vectors of virus to livestock worldwide. Culicoides larval ecology has remained overlooked because of difficulties to identify breeding sites, methodological constraints to collect samples and lack of morphological tools to identify field-collected individuals to the species level. After the 2007 unforeseen outbreaks of African horse sickness virus (AHSV) in Senegal (West Africa), there is a need to identify suitable and productive larval habitats in horse farms for the main Culicoides species to evaluate the implementation of vector control measures or preventive actions. METHODS: We investigate twelve putative larval habitats (habitat types) of Culicoides inside and outside of three horse farms in the Niayes area of Senegal using a combination of flotation and emergence methods during four collection sessions. RESULTS: Among the three studied horse farms, three habitat types were found positive for Culicoides larvae: pond edge, lake edge and puddle edge. A total of 1420 Culicoides individuals (519♂/901♀) belonging to ten species emerged from the substrate samples. Culicoides oxystoma (40 %), C. similis (25 %) and C. nivosus (24 %) were the most abundant species and emerged from the three habitat types while C. kingi (5 %) was only retrieved from lake edges and one male emerged from puddle edge. Culicoides imicola (1.7 %) was found in low numbers and retrieved only from pond and puddle edges. CONCLUSIONS: Larval habitats identified were not species-specific. All positive larval habitats were found outside the horse farms. This study provides original baseline information on larval habitats of Culicoides species in Senegal in an area endemic for AHSV, in particular for species of interest in animal health. These data will serve as a point of reference for future investigations on larval ecology and larval control measures.


Assuntos
Ceratopogonidae/fisiologia , Ecossistema , Doença Equina Africana/transmissão , Doença Equina Africana/virologia , Vírus da Doença Equina Africana , Animais , Cavalos , Insetos Vetores/virologia , Larva/fisiologia , Senegal
10.
Parasit Vectors ; 8: 439, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26310789

RESUMO

BACKGROUND: Culicoides biting midges are biological vectors of internationally important arboviruses of livestock and equines. Insecticides are often employed against Culicoides as a part of vector control measures, but systematic assessments of their efficacy have rarely been attempted. The objective of the present study is to determine baseline susceptibility of multiple Culicoides vector species and populations in Europe and Africa to the most commonly used insecticide active ingredients. Six active ingredients are tested: three that are based on synthetic pyrethroids (alpha-cypermethrin, deltamethrin and permethrin) and three on organophosphates (phoxim, diazinon and chlorpyrifos-methyl). METHODS: Susceptibility tests were conducted on 29,064 field-collected individuals of Culicoides obsoletus Meigen, Culicoides imicola Kieffer and a laboratory-reared Culicoides nubeculosus Meigen strain using a modified World Health Organization assay. Populations of Culicoides were tested from seven locations in four different countries (France, Spain, Senegal and South Africa) and at least four concentrations of laboratory grade active ingredients were assessed for each population. RESULTS: The study revealed that insecticide susceptibility varied at both a species and population level, but that broad conclusions could be drawn regarding the efficacy of active ingredients. Synthetic pyrethroid insecticides were found to inflict greater mortality than organophosphate active ingredients and the colony strain of C. nubeculosus was significantly more susceptible than field populations. Among the synthetic pyrethroids, deltamethrin was found to be the most toxic active ingredient for all species and populations. CONCLUSIONS: The data presented represent the first parallel and systematic assessment of Culicoides insecticide susceptibility across several countries. As such, they are an important baseline reference to monitor the susceptibility status of Culicoides to current insecticides and also to assess the toxicity of new active ingredients with practical implications for vector control strategies.


Assuntos
Ceratopogonidae/classificação , Ceratopogonidae/efeitos dos fármacos , Inseticidas/farmacologia , África , Animais , Bioensaio , Europa (Continente) , Insetos Vetores/classificação , Insetos Vetores/efeitos dos fármacos , Organofosfatos/farmacologia , Testes de Sensibilidade Parasitária , Piretrinas/farmacologia , Análise de Sobrevida
11.
PLoS One ; 10(6): e0131021, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26121048

RESUMO

In Senegal, considerable mortality in the equine population and hence major economic losses were caused by the African horse sickness (AHS) epizootic in 2007. Culicoides oxystoma and Culicoides imicola, known or suspected of being vectors of bluetongue and AHS viruses are two predominant species in the vicinity of horses and are present all year-round in Niayes area, Senegal. The aim of this study was to better understand the environmental and climatic drivers of the dynamics of these two species. Culicoides collections were obtained using OVI (Onderstepoort Veterinary Institute) light traps at each of the 5 sites for three nights of consecutive collection per month over one year. Cross Correlation Map analysis was performed to determine the time-lags for which environmental variables and abundance data were the most correlated. C. oxystoma and C. imicola count data were highly variable and overdispersed. Despite modelling large Culicoides counts (over 220,000 Culicoides captured in 354 night-traps), using on-site climate measures, overdispersion persisted in Poisson, negative binomial, Poisson regression mixed-effect with random effect at the site of capture models. The only model able to take into account overdispersion was the Poisson regression mixed-effect model with nested random effects at the site and date of capture levels. According to this model, meteorological variables that contribute to explaining the dynamics of C. oxystoma and C. imicola abundances were: mean temperature and relative humidity of the capture day, mean humidity between 21 and 19 days prior a capture event, density of ruminants, percentage cover of water bodies within a 2 km radius and interaction between temperature and humidity for C. oxystoma; mean rainfall and NDVI of the capture day and percentage cover of water bodies for C. imicola. Other variables such as soil moisture, wind speed, degree days, land cover or landscape metrics could be tested to improve the models. Further work should also assess whether other trapping methods such as host-baited traps help reduce overdispersion.


Assuntos
Ceratopogonidae/fisiologia , Modelos Biológicos , Animais , Feminino , Análise Multivariada , Reprodutibilidade dos Testes , Senegal , Especificidade da Espécie
12.
Acta Trop ; 149: 239-45, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26099680

RESUMO

African horse sickness- and bluetongue virus are orbiviruses transmitted by Culicoides biting midges (Diptera: Ceratopogonidae) to horses and to ruminants, respectively. Since the last epizootic outbreak of African horse sickness in 2007 in Senegal, extensive investigations have been undertaken to improve our knowledge on Culicoides species involved locally in the transmission of the virus. The purpose of this study was to compare and quantify the host preferences of potential vectors of these orbiviruses on horse and sheep and to study their circadian rhythm. We found that Culicoides oxystoma and species of the sub-genus Avaritia (Culicoides imicola, Culicoides bolitinos and Culicoides pseudopallidipennis) had a preference for horse when compared to sheep (the predicted ratio between horse and sheep was 80 for C. oxystoma and 26 for C. imicola), and were mostly crepuscular: C. oxystoma had continuous activity throughout the diel with peaks in numbers collected after sunrise and sunset, while C. imicola was mostly nocturnal with peak after sunset. Unexpectedly, species of the subgenus Lasiohelea was also collected during this study. This diurnal biting species was a nuisance pest for both animal species used as bait.


Assuntos
Ceratopogonidae/fisiologia , Ritmo Circadiano/fisiologia , Interações Hospedeiro-Parasita , Insetos Vetores/fisiologia , Vírus da Doença Equina Africana , Animais , Vírus Bluetongue , Ceratopogonidae/classificação , Ceratopogonidae/virologia , Feminino , Cavalos , Insetos Vetores/virologia , Senegal , Ovinos
13.
Parasitol Res ; 114(8): 3151-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26002826

RESUMO

Culicoides biting midges (Diptera: Ceratopogonidae) are important vectors of arboviruses in Africa. Culicoides oxystoma has been recently recorded in the Niayes region of Senegal (West Africa) and its high abundance on horses suggests a potential implication in the transmission of the African horse sickness virus in this region. This species is also suspected to transmit bluetongue virus to imported breeds of sheep. Little information is available on the biology and ecology of Culicoides in Africa. Therefore, understanding the circadian host-seeking activity of this putative vector is of primary importance to assess the risk of the transmission of Culicoides-borne pathogens. To achieve this objective, midges were collected using a sheep-baited trap over two consecutive 24-h periods during four seasons in 2012. A total of 441 Culicoides, belonging to nine species including 418 (94.8%) specimens of C. oxystoma, were collected. C. oxystoma presented a bimodal circadian host-seeking activity at sunrise and sunset in July and was active 3 h after sunrise in April. Daily activity appeared mainly related to time periods. Morning activity increased with the increasing temperature up to about 27 °C and then decreased with the decreasing humidity, suggesting thermal limits for C. oxystoma activity. Evening activity increased with the increasing humidity and the decreasing temperature, comprised between 20 and 27 °C according to seasons. Interestingly, males were more abundant in our sampling sessions, with similar activity periods than females, suggesting potential animal host implication in the facilitation of reproduction. Finally, the low number of C. oxystoma collected render practical vector-control recommendations difficult to provide and highlight the lack of knowledge on the bio-ecology of this species of veterinary interest.


Assuntos
Vírus da Doença Equina Africana/fisiologia , Vírus Bluetongue/fisiologia , Ceratopogonidae/fisiologia , Ritmo Circadiano/fisiologia , Insetos Vetores/fisiologia , Animais , Ceratopogonidae/virologia , Feminino , Umidade , Insetos Vetores/virologia , Masculino , Estações do Ano , Senegal
14.
Parasit Vectors ; 8: 39, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25604465

RESUMO

BACKGROUND: African horse sickness (AHS) is an equine disease endemic to Senegal. The African horse sickness virus (AHSV) is transmitted to the mammalian hosts by midges of the Culicoides Latreille genus. During the last epizootic outbreak of AHS in Senegal in 2007, 1,169 horses died from this disease entailing an estimated cost of 1.4 million euros. In spite of the serious animal health and economic implications of AHS, very little is known about determinants involved in transmission such as contact between horses and the Culicoides species suspected of being its vectors. METHODS: The monthly variation in host/vector contact was determined in the Niayes area, Senegal, an area which was severely affected by the 2007 outbreak of AHS. A horse-baited trap and two suction light traps (OVI type) were set up at each of five sites for three consecutive nights every month for one year. RESULTS: Of 254,338 Culicoides midges collected 209,543 (82.4%) were female and 44,795 (17.6%) male. Nineteen of the 41 species collected were new distribution records for Senegal. This increased the number of described Culicoides species found in Senegal to 53. Only 19 species, of the 41 species found in light trap, were collected in the horse-baited trap (23,669 specimens) largely dominated by Culicoides oxystoma (22,300 specimens, i.e. 94.2%) followed by Culicoides imicola (482 specimens, i.e. 2.0%) and Culicoides kingi (446 specimens, i.e. 1.9%). CONCLUSIONS: Culicoides oxystoma should be considered as a potential vector of AHSV in the Niayes area of Senegal due to its abundance on horses and its role in the transmission of other Culicoides-borne viruses.


Assuntos
Vírus da Doença Equina Africana/fisiologia , Doença Equina Africana/virologia , Ceratopogonidae/virologia , Surtos de Doenças/veterinária , Insetos Vetores/virologia , Doença Equina Africana/epidemiologia , Doença Equina Africana/transmissão , Animais , Feminino , Cavalos , Masculino , Estações do Ano , Senegal/epidemiologia
15.
Parasit Vectors ; 7: 147, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24690198

RESUMO

BACKGROUND: The African horse sickness epizootic in Senegal in 2007 caused considerable mortality in the equine population and hence major economic losses. The vectors involved in the transmission of this arbovirus have never been studied specifically in Senegal. This first study of the spatial and temporal dynamics of the Culicoides (Diptera: Ceratopogonidae) species, potential vectors of African horse sickness in Senegal, was conducted at five sites (Mbao, Parc Hann, Niague, Pout and Thies) in the Niayes area, which was affected by the outbreak. METHODS: Two Onderstepoort light traps were used at each site for three nights of consecutive collection per month over one year to measure the apparent abundance of the Culicoides midges. RESULTS: In total, 224,665 specimens belonging to at least 24 different species (distributed among 11 groups of species) of the Culicoides genus were captured in 354 individual collections. Culicoides oxystoma, Culicoides kingi, Culicoides imicola, Culicoides enderleini and Culicoides nivosus were the most abundant and most frequent species at the collection sites. Peaks of abundance coincide with the rainy season in September and October. CONCLUSIONS: In addition to C. imicola, considered a major vector for the African horse sickness virus, C. oxystoma may also be involved in the transmission of this virus in Senegal given its abundance in the vicinity of horses and its suspected competence for other arboviruses including bluetongue virus. This study depicted a site-dependent spatial variability in the dynamics of the populations of the five major species in relation to the eco-climatic conditions at each site.


Assuntos
Vírus da Doença Equina Africana/fisiologia , Vírus Bluetongue/fisiologia , Ceratopogonidae/fisiologia , Insetos Vetores/virologia , Estações do Ano , Doença Equina Africana/epidemiologia , Doença Equina Africana/transmissão , Doença Equina Africana/virologia , Animais , Surtos de Doenças , Cavalos , Dinâmica Populacional , Senegal/epidemiologia , Especificidade da Espécie , Fatores de Tempo
16.
PLoS One ; 8(12): e84316, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24386366

RESUMO

The Schultzei group of Culicoides Latreille (Diptera: Ceratopogonidae) is distributed throughout Africa to northern Asia and Australasia and includes several potential vector species of livestock pathogens. The taxonomy of the species belonging to this species group is confounded by the wide geographical distribution and morphological variation exhibited by many species. In this work, morphological and molecular approaches were combined to assess the taxonomic validity of the species and morphological variants of the Schultzei group found in Senegal by comparing their genetic diversity with that of specimens from other geographical regions. The species list for Senegal was updated with four species: Culicoides kingi, C. oxystoma, C. enderleini and C. nevilli being recorded. This is the first record of C. oxystoma from Africa south of Sahara, and its genetic relationship with samples from Israel, Japan and Australia is presented. This work provides a basis for ecological studies of the seasonal and spatial dynamics of species of this species group that will contribute to better understanding of the epidemiology of the viruses they transmit.


Assuntos
Ceratopogonidae/classificação , Ceratopogonidae/genética , Animais , Ceratopogonidae/anatomia & histologia , Feminino , Geografia , Insetos Vetores/anatomia & histologia , Insetos Vetores/classificação , Insetos Vetores/genética , Masculino , Filogenia , Senegal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...