Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Brain ; 146(9): 3705-3718, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37018058

RESUMO

Although rigidity is a cardinal motor sign in patients with Parkinson's disease (PD), the instrumental measurement of this clinical phenomenon is largely lacking, and its pathophysiological underpinning remains still unclear. Further advances in the field would require innovative methodological approaches able to measure parkinsonian rigidity objectively, discriminate the different biomechanical sources of muscle tone (neural or visco-elastic components), and finally clarify the contribution to 'objective rigidity' exerted by neurophysiological responses, which have previously been associated with this clinical sign (i.e. the long-latency stretch-induced reflex). Twenty patients with PD (67.3 ± 6.9 years) and 25 age- and sex-matched controls (66.9 ± 7.4 years) were recruited. Rigidity was measured clinically and through a robotic device. Participants underwent robot-assisted wrist extensions at seven different angular velocities randomly applied, when ON therapy. For each value of angular velocity, several biomechanical (i.e. elastic, viscous and neural components) and neurophysiological measures (i.e. short and long-latency reflex and shortening reaction) were synchronously assessed and correlated with the clinical score of rigidity (i.e. Unified Parkinson's Disease Rating Scale-part III, subitems for the upper limb). The biomechanical investigation allowed us to measure 'objective rigidity' in PD and estimate the neuronal source of this phenomenon. In patients, 'objective rigidity' progressively increased along with the rise of angular velocities during robot-assisted wrist extensions. The neurophysiological examination disclosed increased long-latency reflexes, but not short-latency reflexes nor shortening reaction, in PD compared with control subjects. Long-latency reflexes progressively increased according to angular velocities only in patients with PD. Lastly, specific biomechanical and neurophysiological abnormalities correlated with the clinical score of rigidity. 'Objective rigidity' in PD correlates with velocity-dependent abnormal neuronal activity. The observations overall (i.e. the velocity-dependent feature of biomechanical and neurophysiological measures of objective rigidity) would point to a putative subcortical network responsible for 'objective rigidity' in PD, which requires further investigation.


Assuntos
Doença de Parkinson , Humanos , Rigidez Muscular/etiologia , Rigidez Muscular/diagnóstico , Rigidez Muscular/tratamento farmacológico , Reflexo de Estiramento/fisiologia , Reflexo Anormal , Eletromiografia
2.
Front Aging Neurosci ; 14: 889930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601625

RESUMO

Background: Handwriting is an acquired complex cognitive and motor skill resulting from the activation of a widespread brain network. Handwriting therefore may provide biologically relevant information on health status. Also, handwriting can be collected easily in an ecological scenario, through safe, cheap, and largely available tools. Hence, objective handwriting analysis through artificial intelligence would represent an innovative strategy for telemedicine purposes in healthy subjects and people affected by neurological disorders. Materials and Methods: One-hundred and fifty-six healthy subjects (61 males; 49.6 ± 20.4 years) were enrolled and divided according to age into three subgroups: Younger adults (YA), middle-aged adults (MA), and older adults (OA). Participants performed an ecological handwriting task that was digitalized through smartphones. Data underwent the DBNet algorithm for measuring and comparing the average stroke sizes in the three groups. A convolutional neural network (CNN) was also used to classify handwriting samples. Lastly, receiver operating characteristic (ROC) curves and sensitivity, specificity, positive, negative predictive values (PPV, NPV), accuracy and area under the curve (AUC) were calculated to report the performance of the algorithm. Results: Stroke sizes were significantly smaller in OA than in MA and YA. The CNN classifier objectively discriminated YA vs. OA (sensitivity = 82%, specificity = 80%, PPV = 78%, NPV = 79%, accuracy = 77%, and AUC = 0.84), MA vs. OA (sensitivity = 84%, specificity = 56%, PPV = 78%, NPV = 73%, accuracy = 74%, and AUC = 0.7), and YA vs. MA (sensitivity = 75%, specificity = 82%, PPV = 79%, NPV = 83%, accuracy = 79%, and AUC = 0.83). Discussion: Handwriting progressively declines with human aging. The effect of physiological aging on handwriting abilities can be detected remotely and objectively by using machine learning algorithms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...