Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 15(5): 706-713, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38746881

RESUMO

Herein, we describe the design, synthesis, and in vitro biological evaluation of HO-1 inducers endowed with cytotoxic effects mediated by ferroptosis activation. Using the natural HO-1 inducer caffeic acid phenethyl ester (CAPE) as a chemical scaffold, new derivatives were synthesized by performing modifications in the cathecol moiety and in the phenethyl ester aromatic ring. Biological assays aimed at evaluating an imbalanced activity of ferroptosis key players identified that 2-(1H-indol-3-yl)ethyl cinnamate (compound 24) possesses improved anticancer activity toward the MDA-MB 231 triple negative breast cancer cell line when compared to CAPE. Increased ROS and LOOH levels, reduced GSH levels, imbalanced mitochondrial activity, and restored cell viability after ferrostatin-1 treatment suggested a ferroptotic mechanism of action, which did not involve GPX4 inhibition. Compound 24 represents an intriguing hit compound useful for the identification of novel ferroptosis inducers.

2.
RSC Adv ; 13(44): 31059-31066, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37881762

RESUMO

Renewed interest towards natural substances has been pushed by the widespread diffusion of antibiotic resistance. Curcumin I is the most active and effective constituent of curcuminoids extracted from Curcuma longa and, among other beneficial effects, attracted attention for its antimicrobial potential. Since the poor pharmacokinetic profile hinders its efficient utilization, in the present paper, we report encapsulation of curcumin I in poly(styrene-co-maleic acid) (SMA-CUR) providing a nanomicellar system with improved aqueous solubility and bioavailability. SMA-CUR was characterized by means of size, zeta potential, polydispersity index, atomic force microscopy (AFM), drug release studies, spectroscopic properties and stability. SMA-CUR nanoformulation displayed exciting antimicrobial properties compared to free curcumin I towards Gram-positive and Gram-negative clinical isolates.

3.
Bioorg Med Chem ; 73: 117032, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202063

RESUMO

The overexpression of σ receptors (σRs) in various types of tumors has prompted a deep investigation of their role in cancer pathophysiology. Consequently, σR ligands have been widely studied in vitro and in vivo for their antiproliferative effects as a novel potential class of chemotherapeutic agents, both alone and in combination with other anticancer drugs. A growing body of evidence highlights that σR ligands can inhibit cancer cells' survival, migration, and proliferation, thanks to the modulation of a wide panel of tumorigenic pathways. In addition to their antitumor activity, σR ligands are gaining momentum as radiotracers for PET and SPECT imaging applications. The purpose of this review is to report on recent advances in the development of σR ligands. In particular, herein, we describe the structure-activity relationships of structurally diverse mixed σ1R/σ2R ligands that showed promising antitumor profiles towards a variety of cancer cell lines.


Assuntos
Antineoplásicos , Neoplasias , Receptores sigma , Antineoplásicos/farmacologia , Humanos , Ligantes , Receptores sigma/metabolismo , Relação Estrutura-Atividade
4.
J Pers Med ; 12(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35629095

RESUMO

Both personalized medicine and nanomedicine are new to medical practice. Nanomedicine is an application of the advances of nanotechnology in medicine and is being integrated into diagnostic and therapeutic tools to manage an array of medical conditions. On the other hand, personalized medicine, which is also referred to as precision medicine, is a novel concept that aims to individualize/customize therapeutic management based on the personal attributes of the patient to overcome blanket treatment that is only efficient in a subset of patients, leaving others with either ineffective treatment or treatment that results in significant toxicity. Novel nanomedicines have been employed in the treatment of several diseases, which can be adapted to each patient-specific case according to their genetic profiles. In this review, we discuss both areas and the intersection between the two emerging scientific domains. The review focuses on the current situation in personalized medicine, the advantages that can be offered by nanomedicine to personalized medicine, and the application of nanoconstructs in the diagnosis of genetic variability that can identify the right drug for the right patient. Finally, we touch upon the challenges in both fields towards the translation of nano-personalized medicine.

5.
Bioorg Chem ; 117: 105428, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710668

RESUMO

Up-regulation of HO-1 had been frequently reported in different cases and types of human malignancies. Since poor clinical outcomes are reported in these cases, this enzyme's inhibition is considered a valuable and proven anticancer approach. To identify novel HO-1 inhibitors suitable for drug development, we report a structure-guided fragment-based approach to identify new lead compounds. Different parts of the selected molecules were analyzed, and the different series of novel compounds were virtually evaluated. The growing experiments of the classical HO-1 inhibitors structure led us to different hit-compounds. A synthetic pathway for six selected molecules was designed, and the compounds were synthesized. The biological activity revealed that molecules 10 and 12 inhibit the HO-1 activity with an IC50 of 1.01 and 0.90 µM, respectively. This study suggested that our growing approach was successful, and these results are ongoing for further development.


Assuntos
Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Imidazóis/farmacologia , Animais , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Heme Oxigenase (Desciclizante)/metabolismo , Imidazóis/síntese química , Imidazóis/química , Ligantes , Modelos Moleculares , Estrutura Molecular , Ratos , Relação Estrutura-Atividade
6.
J Med Chem ; 64(18): 13373-13393, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34472337

RESUMO

Heme oxygenase-1 (HO-1) promotes heme catabolism exercising cytoprotective roles in normal and cancer cells. Herein, we report the design, synthesis, molecular modeling, and biological evaluation of novel HO-1 inhibitors. Specifically, an amide linker in the central spacer and an imidazole were fixed, and the hydrophobic moiety required by the pharmacophore was largely modified. In many tumors, overexpression of HO-1 correlates with poor prognosis and chemoresistance, suggesting the inhibition of HO-1 as a possible antitumor strategy. Accordingly, compounds 7i and 7l-p emerged for their potency against HO-1 and were investigated for their anticancer activity against prostate (DU145), lung (A549), and glioblastoma (U87MG, A172) cancer cells. The selected compounds showed the best activity toward U87MG cells. Compound 7l was further investigated for its in-cell enzymatic HO-1 activity, expression levels, and effects on cell invasion and vascular endothelial growth factor (VEGF) extracellular release. The obtained data suggest that 7l can reduce cell invasivity acting through modulation of HO-1 expression.


Assuntos
Acetamidas/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase-1/antagonistas & inibidores , Acetamidas/síntese química , Acetamidas/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Ratos Sprague-Dawley , Relação Estrutura-Atividade
7.
J Pers Med ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205602

RESUMO

Enhanced permeation retention (EPR) was a significant milestone discovery by Maeda et al. paving the path for the emerging field of nanomedicine to become a powerful tool in the fight against cancer. Sildenafil is a potent inhibitor of phosphodiesterase 5 (PDE-5) used for the treatment of erectile dysfunction (ED) through the relaxation of smooth muscles and the modulation of vascular endothelial permeability. Overexpression of PDE-5 has been reported in lung, colon, metastatic breast cancers, and bladder squamous carcinoma. Moreover, sildenafil has been reported to increase the sensitivity of tumor cells of different origins to the cytotoxic effect of chemotherapeutic agents with augmented apoptosis mediated through inducing the downregulation of Bcl-xL and FAP-1 expression, enhancing reactive oxygen species (ROS) generation, phosphorylating BAD and Bcl-2, upregulating caspase-3,8,9 activities, and blocking cells at G0/G1 cell cycle phase. Sildenafil has also demonstrated inhibitory effects on the efflux activity of ATP-binding cassette (ABC) transporters such as ABCC4, ABCC5, ABCB1, and ABCG2, ultimately reversing multidrug resistance. Accordingly, there has been a growing interest in using sildenafil as monotherapy or chemoadjuvant in EPR augmentation and management of different types of cancer. In this review, we critically examine the basic molecular mechanism of sildenafil related to cancer biology and discuss the overall potential of sildenafil in enhancing EPR-based anticancer drug delivery, pointing to the outcomes of the most important related preclinical and clinical studies.

8.
J Med Chem ; 64(12): 7926-7962, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34076441

RESUMO

Since their discovery as distinct receptor proteins, the specific physiopathological role of sigma receptors (σRs) has been deeply investigated. It has been reported that these proteins, classified into two subtypes indicated as σ1 and σ2, might play a pivotal role in cancer growth, cell proliferation, and tumor aggressiveness. As a result, the development of selective σR ligands with potential antitumor properties attracted significant attention as an emerging theme in cancer research. This perspective deals with the recent advances of σR ligands as novel cytotoxic agents, covering articles published between 2010 and 2020. An up-to-date description of the medicinal chemistry of selective σ1R and σ2R ligands with antiproliferative and cytotoxic activities has been provided, including major pharmacophore models and comprehensive structure-activity relationships for each main class of σR ligands.


Assuntos
Antineoplásicos/farmacologia , Compostos Heterocíclicos/farmacologia , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Compostos Heterocíclicos/química , Compostos Heterocíclicos/uso terapêutico , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
9.
J Enzyme Inhib Med Chem ; 36(1): 1378-1386, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34167427

RESUMO

In this work, the first mutual prodrug of 5-fluorouracil and heme oxygenase1 inhibitor (5-FU/HO-1 hybrid) has been designed, synthesised, and evaluated for its in vitro chemical and enzymatic hydrolysis stability. Predicted in silico physicochemical properties of the newly synthesised hybrid (3) demonstrated a drug-like profile with suitable Absorption, Distribution, Metabolism, and Excretion (ADME) properties and low toxic liabilities. Preliminary cytotoxicity evaluation towards human prostate (DU145) and lung (A549) cancer cell lines demonstrated that 3 exerted a similar effect on cell viability to that produced by the reference drug 5-FU. Among the two tested cancer cell lines, the A549 cells were more susceptible for 3. Of note, hybrid 3 also had a significantly lower cytotoxic effect on healthy human lung epithelial cells (BEAS-2B) than 5-FU. Altogether our results served as an initial proof-of-concept to develop 5-FU/HO-1 mutual prodrugs as potential novel anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Fluoruracila/química , Heme Oxigenase-1/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Pró-Fármacos/síntese química , Ratos , Ratos Sprague-Dawley , Suínos
10.
Bioorg Chem ; 104: 104310, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33010625

RESUMO

The enzymatic family of heme oxygenase (HO) is accountable for heme breakdown. Among the two isoforms characterized to date, HO-2 is poorly investigated due to the lack of potent HO-2 chemical modulators and the greater attentiveness towards HO-1 isoform. In the present paper, we report the rational design and synthesis of HO-2 inhibitors achieved by modulating the volume of known HO-1 inhibitors. The inhibition preference has been moved from HO-1 to HO-2 by merely increasing the volume of the substituent in the western region of the inhibitors. Docking studies demonstrated that new derivatives soak differently in the two binding pockets, probably due to the presence of a Tyr187 residue in HO-2. These findings could be useful for the design of new selective HO-2 compounds.


Assuntos
Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Nitrilas/farmacologia , Algoritmos , Animais , Encéfalo/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Heme Oxigenase (Desciclizante)/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Ratos , Baço/enzimologia , Relação Estrutura-Atividade
11.
Eur J Med Chem ; 183: 111703, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550661

RESUMO

Heme oxygenase (HO) enzymes are involved in heme catabolism and several physiological functions. Among the different HO isoforms, HO-2 stands out for its neuroprotective properties and modulatory activity in male reproduction. However, unlike the HO-1 ligands, the potential therapeutic applications of HO-2 inhibitors/activators have not been extensively explored yet. Moreover, the physiological role of HO-2 is still unclear, mostly due to the lack of highly selective HO-2 chemical probes. To boost the interest on this intriguing target, the present review updates the knowledge on the structure-activity relationships of HO-2 inhibitors and activators, as well as their potential therapeutic applications. To the best of our knowledge, among HO-2 inhibitors, clemizole derivatives are the most selective HO-2 inhibitors reported so far (IC50 HO-1 >100 µM, IC50 HO-2 = 3.4 µM), while the HO-2 nonselective inhibitors described herein possess IC50 HO-2 values ≤ 10 µM. Furthermore, the development of HO-2 activators, such as menadione analogues, helped to understand the critical moieties required for HO-2 activation. Recent advances in the potential therapeutic applications of HO-2 inhibitors/activators cover the fields of neurodegenerative, cardiovascular, inflammatory, and reproductive diseases further stimulating the interest towards this target.


Assuntos
Benzimidazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Heme Oxigenase (Desciclizante)/metabolismo , Vitamina K 3/farmacologia , Animais , Benzimidazóis/química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Vitamina K 3/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...