Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Nat Med ; 30(5): 1339-1348, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689063

RESUMO

Despite substantial progress in cancer microbiome research, recognized confounders and advances in absolute microbiome quantification remain underused; this raises concerns regarding potential spurious associations. Here we study the fecal microbiota of 589 patients at different colorectal cancer (CRC) stages and compare observations with up to 15 published studies (4,439 patients and controls total). Using quantitative microbiome profiling based on 16S ribosomal RNA amplicon sequencing, combined with rigorous confounder control, we identified transit time, fecal calprotectin (intestinal inflammation) and body mass index as primary microbial covariates, superseding variance explained by CRC diagnostic groups. Well-established microbiome CRC targets, such as Fusobacterium nucleatum, did not significantly associate with CRC diagnostic groups (healthy, adenoma and carcinoma) when controlling for these covariates. In contrast, the associations of Anaerococcus vaginalis, Dialister pneumosintes, Parvimonas micra, Peptostreptococcus anaerobius, Porphyromonas asaccharolytica and Prevotella intermedia remained robust, highlighting their future target potential. Finally, control individuals (age 22-80 years, mean 57.7 years, standard deviation 11.3) meeting criteria for colonoscopy (for example, through a positive fecal immunochemical test) but without colonic lesions are enriched for the dysbiotic Bacteroides2 enterotype, emphasizing uncertainties in defining healthy controls in cancer microbiome research. Together, these results indicate the importance of quantitative microbiome profiling and covariate control for biomarker identification in CRC microbiome studies.


Assuntos
Neoplasias Colorretais , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Humanos , Neoplasias Colorretais/microbiologia , Pessoa de Meia-Idade , Fezes/microbiologia , Feminino , Idoso , Masculino , RNA Ribossômico 16S/genética , Adulto , Microbioma Gastrointestinal/genética , Idoso de 80 Anos ou mais , Adulto Jovem , Microbiota/genética , Complexo Antígeno L1 Leucocitário/metabolismo
2.
Gastroenterology ; 166(3): 483-495, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38096956

RESUMO

BACKGROUND & AIMS: Dysbiosis of the gut microbiota is considered a key contributor to inflammatory bowel disease (IBD) etiology. Here, we investigated potential associations between microbiota composition and the outcomes to biological therapies. METHODS: The study prospectively recruited 296 patients with active IBD (203 with Crohn's disease, 93 with ulcerative colitis) initiating biological therapy. Quantitative microbiome profiles of pretreatment and posttreatment fecal samples were obtained combining flow cytometry with 16S amplicon sequencing. Therapeutic response was assessed by endoscopy, patient-reported outcomes, and changes in fecal calprotectin. The effect of therapy on microbiome variation was evaluated using constrained ordination methods. Prediction of therapy outcome was performed using logistic regression with 5-fold cross-validation. RESULTS: At baseline, 65.9% of patients carried the dysbiotic Bacteroides2 (Bact2) enterotype, with a significantly higher prevalence among patients with ileal involvement (76.8%). Microbiome variation was associated with the choice of biological therapy rather than with therapeutic outcome. Only anti-tumor necrosis factor-α treatment resulted in a microbiome shift away from Bact2, concomitant with an increase in microbial load and butyrogen abundances and a decrease in potentially opportunistic Veillonella. Remission rates for patients hosting Bact2 at baseline were significantly higher with anti-tumor necrosis factor-α than with vedolizumab (65.1% vs 35.2%). A prediction model, based on anthropometrics and clinical data, stool features (microbial load, moisture, and calprotectin), and Bact2 detection predicted treatment outcome with 73.9% accuracy for specific biological therapies. CONCLUSION: Fecal characterization based on microbial load, moisture content, calprotectin concentration, and enterotyping may aid in the therapeutic choice of biological therapy in IBD.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Disbiose , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Fezes , Terapia Biológica , Fator de Necrose Tumoral alfa , Complexo Antígeno L1 Leucocitário , Necrose
3.
Nat Commun ; 14(1): 5843, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730687

RESUMO

The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk.


Assuntos
Endocrinologia , Metilaminas , Adulto , Humanos , Causalidade , Rim
4.
Front Microbiol ; 14: 1198903, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37555071

RESUMO

In vitro fermentation strategies with fecal inocula are considered cost-effective methods to gain mechanistic insights into fecal microbiota community dynamics. However, all in vitro approaches have their limitations due to inherent differences with respect to the in vivo situation mimicked, introducing possible biases into the results obtained. Here, we aimed to systematically optimize in vitro fermentation conditions to minimize drift from the initial inoculum, limit growth of opportunistic colonizers, and maximize the effect of added fiber products (here pectin) when compared to basal medium fermentations. We evaluated the impact of varying starting cell density and medium nutrient concentration on these three outcomes, as well as the effect of inoculation with fresh vs. stored fecal samples. By combining GC-MS metabolite profiling and 16 s rRNA gene-based amplicon sequencing, we established that starting cell densities below 1010 cells/ml opened up growth opportunities for members the Enterobacteriaceae family. This effect was exacerbated when using fecal samples that were stored frozen at -80°C. Overgrowth of Enterobacteriaceae resulted in lowered alpha-diversity and larger community drift, possibly confounding results obtained from fermentations in such conditions. Higher medium nutrient concentrations were identified as an additional factor contributing to inoculum community preservation, although the use of a less nutrient dense medium increased the impact of fiber product addition on the obtained metabolite profiles. Overall, our microbiome observations indicated that starting cell densities of 1010 cells/ml limited opportunities for exponential growth, suppressing in vitro community biases, whilst metabolome incubations should preferably be carried out in a diluted medium to maximize the impact of fermentable substrates.

5.
Nat Microbiol ; 8(5): 787-802, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37069399

RESUMO

Anorexia nervosa (AN) is an eating disorder with a high mortality. About 95% of cases are women and it has a population prevalence of about 1%, but evidence-based treatment is lacking. The pathogenesis of AN probably involves genetics and various environmental factors, and an altered gut microbiota has been observed in individuals with AN using amplicon sequencing and relatively small cohorts. Here we investigated whether a disrupted gut microbiota contributes to AN pathogenesis. Shotgun metagenomics and metabolomics were performed on faecal and serum samples, respectively, from a cohort of 77 females with AN and 70 healthy females. Multiple bacterial taxa (for example, Clostridium species) were altered in AN and correlated with estimates of eating behaviour and mental health. The gut virome was also altered in AN including a reduction in viral-bacterial interactions. Bacterial functional modules associated with the degradation of neurotransmitters were enriched in AN and various structural variants in bacteria were linked to metabolic features of AN. Serum metabolomics revealed an increase in metabolites associated with reduced food intake (for example, indole-3-propionic acid). Causal inference analyses implied that serum bacterial metabolites are potentially mediating the impact of an altered gut microbiota on AN behaviour. Further, we performed faecal microbiota transplantation from AN cases to germ-free mice under energy-restricted feeding to mirror AN eating behaviour. We found that the reduced weight gain and induced hypothalamic and adipose tissue gene expression were related to aberrant energy metabolism and eating behaviour. Our 'omics' and mechanistic studies imply that a disruptive gut microbiome may contribute to AN pathogenesis.


Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Humanos , Feminino , Animais , Camundongos , Masculino , Anorexia Nervosa/microbiologia , Metabolômica , Fezes/microbiologia , Comportamento Alimentar , Bactérias/genética
6.
J Crohns Colitis ; 17(9): 1504-1513, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37052201

RESUMO

BACKGROUND: Inflammatory bowel disease [IBD] is a major debilitating disease. Recently, the gut microbiota has gained attention as an important factor involved in the pathophysiology of IBD. As a complement to the established bacterial 'enterotypes' associated with IBD, we focused here on viruses. We investigated the intestinal virome of IBD patients undergoing biological therapy for the presence of virome configurations associated with IBD, and to uncover how those configurations are associated with therapeutic success. METHODS: Viral-like particle enrichment followed by deep sequencing was performed on 432 faecal samples from 181 IBD patients starting biological therapy. Redundancy analysis and Dirichlet Multinomial Mixtures were applied to determine covariates of the virome composition and to condense the gut virota into 'viral community types', respectively. RESULTS: Patients were stratified based on unsupervised clustering into two viral community types. Community type CA showed a low α-diversity and a high relative abundance of Caudoviricetes [non-CrAss] phages and was associated with the dysbiotic Bact2-enterotype. Community type CrM showed a high α-diversity and a high relative abundance of Crassvirales and Malgrandaviricetes phages. During post-interventional analysis, endoscopic outcome was associated with gut virome composition. Remitting UC patients had a high percentage of community type CrM, a high Shannon diversity and a low lysogenic potential. Pre-interventional analyses also identified five novel phages associated with treatment success. CONCLUSIONS: This study proposed two gut virome configurations that may be involved in the pathophysiology of IBD. Interestingly, those viral configurations are further associated with therapeutic success, suggesting a potential clinical relevance.

7.
Gut Microbes ; 15(1): 2180316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36803643

RESUMO

Predicting the long-term outcome of multiple sclerosis (MS) remains an important challenge to this day. As the gut microbiota is emerging as a potential player in MS, we investigated in this study whether gut microbial composition at baseline is related to long-term disability worsening in a longitudinal cohort of 111 MS patients. Fecal samples and extensive host metadata were collected at baseline and 3 months post-baseline, with additional repeated neurological measurements performed over (median) 4.4 y. Worsening (with EDSS-Plus) occurred in 39/95 patients (outcome undetermined for 16 individuals). The inflammation-associated, dysbiotic Bacteroides 2 enterotype (Bact2) was detected at baseline in 43.6% of worsened patients, while only 16.1% of non-worsened patients harbored Bact2. This association was independent of identified confounders, and Bact2 was more strongly associated with EDSS-Plus than neurofilament light chain (NfL) plasma levels. Furthermore, using fecal sampling performed 3 months post-baseline, we observed Bact2 to be relatively stable, suggesting its potential use as a prognostic biomarker in MS clinical practice.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla , Humanos
8.
Eur J Pharm Biopharm ; 183: 92-101, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36603693

RESUMO

BACKGROUND: Knowledge regarding the gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass is urgently needed to understand, prevent and treat the nutritional and pharmacological complications of bariatric surgery. AIM: To investigate the effect of sleeve gastrectomy and Roux-en-Y gastric bypass on gastrointestinal motility (e.g., transit and pressure), pH, and intestinal bile acid concentration. MATERIAL AND METHODS: An exploratory cross-sectional study was performed in six participants living with obesity, six participants who underwent sleeve gastrectomy, and six participants who underwent Roux-en-Y gastric bypass. During the first visit, a wireless motility capsule (SmartPill©) was ingested after an overnight fast to measure gastrointestinal transit, pH, and pressure. During the second visit, a gastric emptying scintigraphy test of a nutritional drink labeled with 99mTc-colloid by a dual-head SPECT gamma camera was performed to measure gastric emptying half-time (GET1/2). During the third visit, two customized multiple lumen aspiration catheters were positioned to collect fasting and postprandial intestinal fluids to measure bile acid concentration. RESULTS: Immediate pouch emptying (P = 0.0007) and a trend for faster GET1/2 (P = 0.09) were observed in both bariatric groups. There was a tendency for a shorter orocecal transit in participants with sleeve gastrectomy and Roux-en-Y gastric bypass (P = 0.08). The orocecal segment was characterized by a higher 25th percentile pH (P = 0.004) and a trend for a higher median pH in both bariatric groups (P = 0.07). Fasting total bile acid concentration was 7.5-fold higher in the common limb after Roux-en-Y gastric bypass (P < 0.0001) and 3.5-fold higher in the jejunum after sleeve gastrectomy (P = 0.009) compared to obesity. Postprandial bile acid concentration was 3-fold higher in the jejunum after sleeve gastrectomy (P = 0.0004) and 6.5-fold higher in the common limb after Roux-en-Y gastric bypass (P < 0.0001) compared to obesity. CONCLUSION: The anatomical alterations of sleeve gastrectomy and Roux-en-Y gastric bypass have an important impact on gastrointestinal physiology. This data confirms changes in transit and pH and provides the first evidence for altered intraluminal bile acid concentration.


Assuntos
Derivação Gástrica , Obesidade Mórbida , Humanos , Derivação Gástrica/métodos , Obesidade Mórbida/cirurgia , Obesidade Mórbida/complicações , Estudos Transversais , Obesidade/cirurgia , Obesidade/complicações , Gastrectomia/métodos , Ácidos e Sais Biliares
9.
Am J Physiol Endocrinol Metab ; 324(1): E85-E96, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516223

RESUMO

Diet-induced obesity contributes to the development of type 2 diabetes, insulin resistance, metabolic inflammation, oxidative and endoplasmic reticulum (ER) stress. Overall, obesity is associated with deviations in the composition and functionality of the gut microbiota. There are many divergent findings regarding the link between the excessive intake of certain dietary components (i.e., fat and sugar) and obesity development. We therefore investigated the effect of specific diets, with a different content of sugar and fat, in promoting obesity and related comorbidities as well as their impact on microbial load and gut microbiota composition/diversity. C57BL/6J mice were fed either a low-sugar, low-fat control diet (CT), a high-sugar diet (HS), a high-fat, high-sugar diet (HF/HS), or a high-fat diet (HF) for 8 wk. The impact of the different diets on obesity, glucose metabolism, inflammation, and oxidative and ER stress was determined. Diet-induced changes in the gut microbiota composition and density were also analyzed. HF diet-fed mice showed the highest body weight and fat mass gains and displayed the most impaired glucose and insulin profiles. HS, HF/HS, and HF diets differently affected hepatic cholesterol content and mRNA expression of several markers associated with immune cells, inflammation, oxidative and ER stress in several organs/tissues. In addition, HF diet feeding resulted in a decreased microbial load at the end of the experiment. When analyzing the gut microbiota composition, we found that HS, HF/HS, and HF diets induced specific changes in the abundance of certain bacterial taxa. This was not associated with a specific change in systemic inflammatory markers, but HS mice exhibited higher FGF21 plasma levels compared with HF diet-fed mice. Taken together, our results highlight that dietary intake of different macronutrients distinctively impacts the development of an obese/diabetic state and the regulation of metabolic inflammation in specific organs. We propose that these differences are not only obesity-driven but that changes in the gut microbiota composition may play a key role in this context.NEW & NOTEWORTHY To our knowledge, this study is the first to demonstrate that dietary macronutrients (i.e., sugar and fat) have an impact on fecal bacterial cell counting and quantitative microbiome profiling in mice. Yet, we demonstrate that dietary fat is the determining factor to promote obesity and diabetes progression, and local inflammation in different body sites. These observations can help to disentangle the conundrum of the detrimental effects of fat and sugar in our dietary habits.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Açúcares/farmacologia , Diabetes Mellitus Tipo 2/complicações , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Dieta Hiperlipídica , Inflamação , Bactérias
10.
Gut ; 72(1): 180-191, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36171079

RESUMO

Accumulating evidence indicates that gut transit time is a key factor in shaping the gut microbiota composition and activity, which are linked to human health. Both population-wide and small-scale studies have identified transit time as a top covariate contributing to the large interindividual variation in the faecal microbiota composition. Despite this, transit time is still rarely being considered in the field of the human gut microbiome. Here, we review the latest research describing how and why whole gut and segmental transit times vary substantially between and within individuals, and how variations in gut transit time impact the gut microbiota composition, diversity and metabolism. Furthermore, we discuss the mechanisms by which the gut microbiota may causally affect gut motility. We argue that by taking into account the interindividual and intraindividual differences in gut transit time, we can advance our understanding of diet-microbiota interactions and disease-related microbiome signatures, since these may often be confounded by transient or persistent alterations in transit time. Altogether, a better understanding of the complex, bidirectional interactions between the gut microbiota and transit time is required to better understand gut microbiome variations in health and disease.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Fezes , Dieta
11.
Microbiome ; 10(1): 80, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35644616

RESUMO

BACKGROUND: Novel strategies for anaerobic bacterial isolations from human faecal samples and various initiatives to generate culture collections of gut-derived bacteria have instigated considerable interest for the development of novel microbiota-based treatments. Early in the process of building a culture collection, optimal faecal sample preservation is essential to safeguard the viability of the broadest taxonomic diversity range possible. In contrast to the much more established faecal storage conditions for meta-omics applications, the impact of stool sample preservation conditions on bacterial growth recovery and isolation remains largely unexplored. In this study, aliquoted faecal samples from eleven healthy human volunteers selected based on a range of physicochemical and microbiological gradients were cryopreserved at - 80 °C either without the addition of any medium (dry condition) or in different Cary-Blair medium conditions with or without a cryoprotectant, i.e. 20% (v/v) glycerol or 5% (v/v) DMSO. Faecal aliquots were subjected to bulk 16S rRNA gene sequencing as well as dilution plating on modified Gifu Anaerobic Medium after preservation for culturable fraction profiling and generation of bacterial culture collections. RESULTS: Analyses of compositional variation showed that cryopreservation medium conditions affected quantitative recovery but not the overall community composition of cultured fractions. Post-preservation sample dilution and richness of the uncultured source samples were the major drivers of the cultured fraction richness at genus level. However, preservation conditions differentially affected recovery of specific genera. Presence-absence analysis indicated that twenty-two of the 45 most abundant common genera (>0.01% abundance, dilution 10-4) were recovered in cultured fractions from all preservation conditions, while nine genera were only detected in fractions from a single preservation condition. Overall, the highest number of common genera (i.e. 35/45) in cultured fractions were recovered from sample aliquots preserved without medium and in the presence of Cary-Blair medium containing 5% (v/v) DMSO. Also, in the culture collection generated from the cultured fractions, these two preservation conditions yielded the highest species richness (72 and 66, respectively). CONCLUSION: Our results demonstrate that preservation methods partly determine richness and taxonomic diversity of gut anaerobes recovered from faecal samples. Complementing the current standard practice of cryopreserving stool samples in dry conditions with other preservation conditions, such as Cary-Blair medium with DMSO, could increase the species diversity of gut-associated culture collections. Video abstract.


Assuntos
Criopreservação , Dimetil Sulfóxido , Meios de Cultura , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética
12.
Proc Natl Acad Sci U S A ; 119(13): e2114619119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35320047

RESUMO

SignificanceMicrobes colonizing the infant gut during the first year(s) of life play an important role in immune system development. We show that after birth the (nearly) sterile gut is rapidly colonized by bacteria and their viruses (phages), which often show a strong cooccurrence. Most viruses infecting the infant do not cause clinical signs and their numbers strongly increase after day-care entrance. The infant diet is clearly reflected by identification of plant-infecting viruses, whereas fungi and parasites are not part of a stable gut microbiota. These temporal high-resolution baseline data about the gut colonization process will be valuable for further investigations of pathogenic viruses, dynamics between phages and their bacterial host, as well as studies investigating infants with a disturbed microbiota.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Vírus , Bactérias , Humanos , Lactente
13.
Nat Med ; 28(2): 303-314, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35177860

RESUMO

Previous microbiome and metabolome analyses exploring non-communicable diseases have paid scant attention to major confounders of study outcomes, such as common, pre-morbid and co-morbid conditions, or polypharmacy. Here, in the context of ischemic heart disease (IHD), we used a study design that recapitulates disease initiation, escalation and response to treatment over time, mirroring a longitudinal study that would otherwise be difficult to perform given the protracted nature of IHD pathogenesis. We recruited 1,241 middle-aged Europeans, including healthy individuals, individuals with dysmetabolic morbidities (obesity and type 2 diabetes) but lacking overt IHD diagnosis and individuals with IHD at three distinct clinical stages-acute coronary syndrome, chronic IHD and IHD with heart failure-and characterized their phenome, gut metagenome and serum and urine metabolome. We found that about 75% of microbiome and metabolome features that distinguish individuals with IHD from healthy individuals after adjustment for effects of medication and lifestyle are present in individuals exhibiting dysmetabolism, suggesting that major alterations of the gut microbiome and metabolome might begin long before clinical onset of IHD. We further categorized microbiome and metabolome signatures related to prodromal dysmetabolism, specific to IHD in general or to each of its three subtypes or related to escalation or de-escalation of IHD. Discriminant analysis based on specific IHD microbiome and metabolome features could better differentiate individuals with IHD from healthy individuals or metabolically matched individuals as compared to the conventional risk markers, pointing to a pathophysiological relevance of these features.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Microbiota , Humanos , Estudos Longitudinais , Metaboloma , Pessoa de Meia-Idade
14.
Gut ; 71(12): 2463-2480, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35017197

RESUMO

OBJECTIVES: Gut microbiota is a key component in obesity and type 2 diabetes, yet mechanisms and metabolites central to this interaction remain unclear. We examined the human gut microbiome's functional composition in healthy metabolic state and the most severe states of obesity and type 2 diabetes within the MetaCardis cohort. We focused on the role of B vitamins and B7/B8 biotin for regulation of host metabolic state, as these vitamins influence both microbial function and host metabolism and inflammation. DESIGN: We performed metagenomic analyses in 1545 subjects from the MetaCardis cohorts and different murine experiments, including germ-free and antibiotic treated animals, faecal microbiota transfer, bariatric surgery and supplementation with biotin and prebiotics in mice. RESULTS: Severe obesity is associated with an absolute deficiency in bacterial biotin producers and transporters, whose abundances correlate with host metabolic and inflammatory phenotypes. We found suboptimal circulating biotin levels in severe obesity and altered expression of biotin-associated genes in human adipose tissue. In mice, the absence or depletion of gut microbiota by antibiotics confirmed the microbial contribution to host biotin levels. Bariatric surgery, which improves metabolism and inflammation, associates with increased bacterial biotin producers and improved host systemic biotin in humans and mice. Finally, supplementing high-fat diet-fed mice with fructo-oligosaccharides and biotin improves not only the microbiome diversity, but also the potential of bacterial production of biotin and B vitamins, while limiting weight gain and glycaemic deterioration. CONCLUSION: Strategies combining biotin and prebiotic supplementation could help prevent the deterioration of metabolic states in severe obesity. TRIAL REGISTRATION NUMBER: NCT02059538.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Obesidade Mórbida , Complexo Vitamínico B , Humanos , Camundongos , Animais , Prebióticos , Obesidade Mórbida/cirurgia , Biotina/farmacologia , Complexo Vitamínico B/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Inflamação
16.
Gut ; 71(3): 534-543, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34108237

RESUMO

OBJECTIVE: To investigate the abundance and the prevalence of Dysosmobacter welbionis J115T, a novel butyrate-producing bacterium isolated from the human gut both in the general population and in subjects with metabolic syndrome. To study the impact of this bacterium on host metabolism using diet-induced obese and diabetic mice. DESIGN: We analysed the presence and abundance of the bacterium in 11 984 subjects using four human cohorts (ie, Human Microbiome Project, American Gut Project, Flemish Gut Flora Project and Microbes4U). Then, we tested the effects of daily oral gavages with live D. welbionis J115T on metabolism and several hallmarks of obesity, diabetes, inflammation and lipid metabolism in obese/diabetic mice. RESULTS: This newly identified bacterium was detected in 62.7%-69.8% of the healthy population. Strikingly, in obese humans with a metabolic syndrome, the abundance of Dysosmobacter genus correlates negatively with body mass index, fasting glucose and glycated haemoglobin. In mice, supplementation with live D. welbionis J115T, but not with the pasteurised bacteria, partially counteracted diet-induced obesity development, fat mass gain, insulin resistance and white adipose tissue hypertrophy and inflammation. In addition, live D. welbionis J115T administration protected the mice from brown adipose tissue inflammation in association with increased mitochondria number and non-shivering thermogenesis. These effects occurred with minor impact on the mouse intestinal microbiota composition. CONCLUSIONS: These results suggest that D. welbionis J115T directly and beneficially influences host metabolism and is a strong candidate for the development of next-generation beneficial bacteria targeting obesity and associated metabolic diseases.


Assuntos
Clostridiales/isolamento & purificação , Doenças Metabólicas/microbiologia , Doenças Metabólicas/prevenção & controle , Obesidade/microbiologia , Obesidade/prevenção & controle , Animais , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Resistência à Insulina , Camundongos , Camundongos Obesos
17.
Nat Microbiol ; 7(1): 87-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34969979

RESUMO

Although the composition and functional potential of the human gut microbiota evolve over the lifespan, kinship has been identified as a key covariate of microbial community diversification. However, to date, sharing of microbiota features within families has mostly been assessed between parents and their direct offspring. Here we investigate the potential transmission and persistence of familial microbiome patterns and microbial genotypes in a family cohort (n = 102) spanning 3 to 5 generations over the same female bloodline. We observe microbiome community composition associated with kinship, with seven low abundant genera displaying familial distribution patterns. While kinship and current cohabitation emerge as closely entangled variables, our explorative analyses of microbial genotype distribution and transmission estimates point at the latter as a key covariate of strain dissemination. Highest potential transmission rates are estimated between sisters and mother-daughter pairs, decreasing with increasing daughter's age and being higher among cohabiting pairs than those living apart. Although rare, we detect potential transmission events spanning three and four generations, primarily involving species of the genera Alistipes and Bacteroides. Overall, while our analyses confirm the existence of family-bound microbiome community profiles, transmission or co-acquisition of bacterial strains appears to be strongly linked to cohabitation.


Assuntos
Bactérias/genética , Família , Microbioma Gastrointestinal/genética , Metagenoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos/genética , Criança , Pré-Escolar , Estudos de Coortes , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Humanos , Metagenômica/métodos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Adulto Jovem
18.
Environ Int ; 158: 106906, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607040

RESUMO

FLEXiGUT is the first large-scale exposomics study focused on chronic low-grade inflammation. It aims to characterize human life course environmental exposure to assess and validate its impact on gut inflammation and related biological processes and diseases. The cumulative influences of environmental and food contaminants throughout the lifespan on certain biological responses related to chronic gut inflammation will be investigated in two Flemish prospective cohorts, namely the "ENVIRONAGE birth cohort", which provides follow-up from gestation to early childhood, and the "Flemish Gut Flora Project longitudinal cohort", a cohort of adults. The exposome will be characterised through biomonitoring of legacy and emerging contaminants, mycotoxins and markers of air pollution, by analysing the available metadata on nutrition, location and activity, and by applying state-of-the-art -omics techniques, including metagenomics, metabolomics and DNA adductomics, as well as the assessment of telomere length and measurement of inflammatory markers, to encompass both exposure and effect. Associations between exposures and health outcomes will be uncovered using an integrated -omics data analysis framework comprising data exploration, pre-processing, dimensionality reduction and data mining, combined with machine learning-based pathway analysis approaches. This is expected to lead to a more profound insight in mechanisms underlying disease progression (e.g. metabolic disorders, food allergies, gastrointestinal cancers) and/or accelerated biological ageing.


Assuntos
Coorte de Nascimento , Expossoma , Adulto , Pré-Escolar , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Inflamação , Metagenômica , Estudos Prospectivos
19.
mBio ; 12(6): e0185721, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903050

RESUMO

Disturbances in the primary colonization of the infant gut can result in lifelong consequences and have been associated with a range of host conditions. Although early-life factors have been shown to affect infant gut microbiota development, our current understanding of human gut colonization in early life remains limited. To gain more insights into the unique dynamics of this rapidly evolving ecosystem, we investigated the microbiota over the first year of life in eight densely sampled infants (n = 303 total samples). To evaluate the gut microbiota maturation transition toward an adult configuration, we compared the microbiome composition of the infants to that of the Flemish Gut Flora Project (FGFP) population (n = 1,106). We observed the infant gut microbiota to mature through three distinct, conserved stages of ecosystem development. Across these successional gut microbiota maturation stages, the genus predominance was observed to shift from Escherichia over Bifidobacterium to Bacteroides. Both disease and antibiotic treatment were observed to be associated occasionally with gut microbiota maturation stage regression, a transient setback in microbiota maturation dynamics. Although the studied microbiota trajectories evolved to more adult-like constellations, microbiome community typing against the background of the FGFP cohort clustered all infant samples within the (in adults) potentially dysbiotic Bacteroides 2 (Bact2) enterotype. We confirmed the similarities between infant gut microbial colonization and adult dysbiosis. Profound knowledge about the primary gut colonization process in infants might provide crucial insights into how the secondary colonization of a dysbiotic adult gut can be redirected. IMPORTANCE After birth, microbial colonization of the infant intestinal tract is important for health later in life. However, this initial process is highly dynamic and influenced by many factors. Studying this process in detail requires a dense longitudinal sampling effort. In the current study, the bacterial microbiota of >300 stool samples was analyzed from 8 healthy infants, suggesting that the infant gut microbial population matures along a path involving distinct microbial constellations and that the timing of these transitions is infant specific and can temporarily retrace upon external events. We also showed that the infant microbial populations show similarities to suboptimal bacterial populations in the guts of adults. These insights are crucial for a better understanding of the dynamics and characteristics of a "healthy gut microbial population" in both infants and adults and might allow the identification of intervention targets in cases of microbial disturbances or disease.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Recém-Nascido/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/genética , Estudos de Coortes , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Lactente , Masculino
20.
Nature ; 600(7889): 500-505, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880489

RESUMO

During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1-5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug-host-microbiome interactions in cardiometabolic disease.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Microbiota , Clostridiales , Humanos , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...