Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857064

RESUMO

Enterococcus faecium is a microbiota species in humans that can modulate host immunity (Griffin and Hang, 2022), but has also acquired antibiotic resistance and is a major cause of hospital-associated infections (Van Tyne and Gilmore, 2014). Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity (Rangan et al., 2016; Pedicord et al., 2016; Kim et al., 2019) and immune checkpoint inhibitor antitumor activity (Griffin et al., 2021). However, the functions of SagA in E. faecium were unknown. Here, we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, ΔsagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, the plasmid-based expression of SagA, but not its catalytically inactive mutant, restored ΔsagA growth, production of active muropeptides, and NOD2 activation. SagA is, therefore, essential for E. faecium growth, stress resistance, and activation of host immunity.


Assuntos
Enterococcus faecium , Inibidores de Checkpoint Imunológico , N-Acetil-Muramil-L-Alanina Amidase , Enterococcus faecium/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Inibidores de Checkpoint Imunológico/farmacologia , Humanos , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Peptidoglicano/metabolismo , Camundongos
2.
bioRxiv ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38014356

RESUMO

Enterococcus faecium is a microbiota species in humans that can modulate host immunity, but has also acquired antibiotic resistance and is a major cause of hospital-associated infections. Notably, diverse strains of E. faecium produce SagA, a highly conserved peptidoglycan hydrolase that is sufficient to promote intestinal immunity and immune checkpoint inhibitor antitumor activity. However, the functions of SagA in E. faecium were unknown. Here we report that deletion of sagA impaired E. faecium growth and resulted in bulged and clustered enterococci due to defective peptidoglycan cleavage and cell separation. Moreover, Δ sagA showed increased antibiotic sensitivity, yielded lower levels of active muropeptides, displayed reduced activation of the peptidoglycan pattern-recognition receptor NOD2, and failed to promote cancer immunotherapy. Importantly, plasmid-based expression of SagA, but not its catalytically-inactive mutant, restored Δ sagA growth, production of active muropeptides and NOD2 activation. SagA is therefore essential for E. faecium growth, stress resistance and activation of host immunity.

3.
Anal Chem ; 94(18): 6657-6664, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35486532

RESUMO

With the growing interest in the understanding of the importance of RNAs in health and disease, detection of RNAs in living cells is of high importance. Fluorogenic dyes that light up specifically selected RNA aptamers constitute an attractive direction in the design of RNA imaging probes. In this work, based on our recently proposed concept of a fluorogenic dimer, we aim to develop a robust molecular tool for intracellular RNA imaging. We rationally designed a fluorogenic self-quenched dimer (orange Gemini, o-Gemini) based on rhodamine and evaluated its capacity to light up its cognate aptamer o-Coral in solution and live cells. We found that the removal of biotin from the dimer slightly improved the fluorogenic response without losing the affinity to the cognate aptamer (o-Coral). On the other hand, replacing sulforhodamine with a carboxyrhodamine produced drastic improvement of the affinity and the turn-on response to o-Coral and, thus, a better limit of detection. In live cells expressing o-Coral-tagged RNAs, the carboxyrhodamine analogue of o-Gemini without a biotin unit displayed a higher signal as well as faster internalization into the cells. We suppose that less hydrophilic carboxyrhodamine compared to sulforhodamine can more readily penetrate through the cell plasma membrane and, together with its higher affinity to o-Coral, provide the observed improvement in the imaging experiments. The promiscuity of the o-Coral RNA aptamer to the fluorogenic dimer allowed us to tune a fluorogen chemical structure and thus drastically improve the fluorescence response of the probe to o-Coral-tagged RNAs.


Assuntos
Aptâmeros de Nucleotídeos , RNA , Aptâmeros de Nucleotídeos/química , Biotina , Corantes Fluorescentes/química , RNA/química , Rodaminas/química
4.
Bioconjug Chem ; 31(3): 875-883, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32053748

RESUMO

The plasma membrane (PM) plays a major role in many biological processes; therefore, its proper fluorescence staining is required in bioimaging. Among the commercially available PM probes, styryl dye FM1-43 is one of the most widely used. In this work, we demonstrated that fine chemical modifications of FM1-43 can dramatically improve the PM staining. The newly developed probes, SP-468 and SQ-535, were found to display enhanced photophysical properties (reduced cross-talk, higher brightness, improved photostability) and, unlike FM1-43, provided excellent and immediate PM staining in 5 different mammalian cell types including neurons (primary culture and tissue imaging). Taking advantage of these features, we successfully used SP-468 in STED super resolution neuronal imaging. Additionally, we showed that the new probes displayed differences in their internalization pathways compared to their parent FM1-43. Finally, we showed that the new probes kept the ability to stain the PM of plant cells. Overall, this work presents new useful probes for PM imaging in cells and tissues and provides insights on the molecular design of new PM targeting molecules.


Assuntos
Membrana Celular/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Imagem Molecular/métodos , Compostos de Piridínio/química , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo , Linhagem Celular , Humanos
5.
Nat Chem Biol ; 16(1): 69-76, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636432

RESUMO

Live-cell imaging of RNA has remained a challenge because of the lack of naturally fluorescent RNAs. Recently developed RNA aptamers that can light-up small fluorogenic dyes could overcome this limitation, but they still suffer from poor brightness and photostability. Here, we propose the concept of a cell-permeable fluorogenic dimer of self-quenched sulforhodamine B dyes (Gemini-561) and the corresponding dimerized aptamer (o-Coral) that can drastically enhance performance of the current RNA imaging method. The improved brightness and photostability, together with high affinity of this complex, allowed direct fluorescence imaging in live mammalian cells of RNA polymerase III transcription products as well as messenger RNAs labeled with a single copy of the aptamer; that is, without tag multimerization. The developed fluorogenic module enables fast and sensitive detection of RNA inside live cells, while the proposed design concept opens the route to new generation of ultrabright RNA probes.


Assuntos
Corantes Fluorescentes/química , RNA/química , Espectrometria de Fluorescência/métodos , Aptâmeros de Nucleotídeos/genética , Dimerização , Fluorescência , Biblioteca Gênica , Células HEK293 , Células HeLa , Humanos , Microfluídica/métodos , RNA/análise , Rodaminas/química , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA