Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 38: 101735, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38799115

RESUMO

Diabetes is a group of medical conditions characterized by the body's inability to effectively control blood glucose levels, due to either insufficient insulin synthesis in type 1 diabetes or inadequate insulin sensitivity in type 2 diabetes. According to this research, the PI3K/AKT pathway of Ocimum gratissimum leaf flavonoid-rich extracts in streptozotocin-induced diabetic rats was studied. We purchased and used a total of forty (40) male Wistar rats for the study. We divided the animals into five (5) different groups: normal control (Group A), diabetic control (Group B), low dose (150 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (LDOGFL) (Group C), high dose (300 mg/kg body weight) of Ocimum gratissimum flavonoid-rich leaf extract (HDOGFL) (Group D), and 200 mg/kg of metformin (MET) (Group E). Streptozotocin induced all groups except Group A, which serves as the normal control group. The experiment lasted for 21 days, following which we sacrificed the animals and harvested their brains for biochemical analysis on the 22nd day. We carried out an analysis that included reduced glutathione (GSH), glutathione transferases (GST), catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD), along with GLUT4, MDA, pro-inflammatory cytokines, NO, neurotransmitters, cholinergic enzyme activities, cardiolipin, and the gene expression of PI3K/AKT. The obtained result indicates that the flavonoid-rich extracts of O. gratissimum significantly enhanced the levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin. The levels of GSH, GST, CAT, GPx, and SOD, as well as GLUT4 and cardiolipin, were significantly increased by gratissimum. Moreover, the extracts decrease the levels of MDA, pro-inflammatory cytokines, NO, neurotransmitters, and cholinergic enzyme activities. Additionally, the flavonoid-rich extracts of O. gratissimum significantly improved the AKT and PI3K gene expressions in diabetic rats. gratissimum had their AKT and PI3K gene expressions significantly (p < 0.05) improved. The findings indicate that O. gratissimum leaf flavonoids have the potential to treat diabetes mellitus. gratissimum leaf flavonoids possess therapeutic potential in themselves and can be applied in the management of diabetes mellitus. Although further analysis can be carried out in terms of isolating, profiling, or purifying the active compounds present in the plant's extract.

2.
ACS Omega ; 9(17): 19334-19344, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708257

RESUMO

Diabetes-induced kidney damage represents a substantial health hazard, emphasizing the imperative to explore potential therapeutic interventions. This study investigates the nephroprotective activity of flavonoid-rich extracts from Hibiscus sabdariffa leaves in streptozotocin-induced diabetic rats. The flavonoid-rich extracts of H. sabdariffa leaves was obtained using a standard procedure. The animals were induced with streptozotocin and thereafter treated with both low (LDHSFL) and high doses (HDHSFL) of flavonoid-rich extracts from H. sabdariffa leaves and metformin (MET), and other groups are diabetic control (DC) and normal control (NC). The study assesses diverse renal parameters, encompassing kidney redox stress biomarkers, serum electrolyte levels, kidney inflammatory biomarkers, serum concentrations of creatinine, urea, and uric acid, kidney phosphatase activities, renal histopathology, and relative gene expressions of kidney injury molecule-1 (KIM-1) and transforming growth factor beta-1 (TGF-1ß), comparing these measurements with normal and diabetic control groups (NC and DC). The findings indicate that the use of extracts from H. sabdariffa leaves markedly (p < 0.05) enhanced renal well-being by mitigating nephropathy, as demonstrated through the adjustment of various biochemical and gene expression biomarkers, indicating a pronounced antioxidative and anti-inflammatory effect, improved kidney morphology, and mitigation of renal dysfunction. These findings suggest that H. sabdariffa leaf flavonoid extracts exhibit nephroprotective properties, presenting a potential natural therapeutic approach for the treatment of diabetic nephropathy.

3.
Neurotoxicology ; 90: 158-171, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337893

RESUMO

The neurobehavioral, brain redox-stabilizing and neurochemical modulatory properties of catechin and quercetin in rotenone-induced Parkinsonism, and the involvement of NF-κB-mediated inflammation, were investigated. Male Wistar rats subcutaneously administered with multiple doses of 1.5 mg/kg rotenone were post-treated with 5-20 mg/kg catechin or quercetin. This was followed by neurobehavioral evaluation, biochemical estimations, and assessment of neurotransmitter metabolism in the striatum. Expression of genes involved in the canonical pathway for the activation of NF-κB mediated inflammation (IL-1ß, TNF-α, NF-κB, and IκKB) and the pro-apoptotic gene, p53, in the striatum was determined by RT-qPCR. Catechin and quercetin mitigated neurobehavioral deficits caused by rotenone. Both flavonoids attenuated striatal redox stress and neurochemical dysfunction, optimized disturbed dopamine metabolism, and improved depletion of neuron density caused by rotenone toxicity. While administration of catechin produced a more pronounced attenuating effect on IL-1ß, TNF-α, and p53 genes, the attenuating effect of quercetin (20 mg/kg) was more pronounced on NF-κB and IκKB gene expressions when compared to the group administered with rotenone only. Comparatively, quercetin demonstrated superior protection against rotenone neurotoxicity. It is concluded that catechin and quercetin have potential relevance in Parkinson's disease therapy through amelioration of redox stress, optimization of dopamine metabolism, and modulation of anti-inflammatory and anti-apoptotic pathways.


Assuntos
Catequina , Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Catequina/efeitos adversos , Dopamina/metabolismo , Genes p53 , Inflamação/metabolismo , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Quercetina/farmacologia , Ratos , Ratos Wistar , Rotenona/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Diabetes Metab Disord ; 19(1): 197-204, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32420297

RESUMO

Background: Annona muricata (Annonaceae) known as soursop is a common tropical plant species known for its numerous medicinal properties including obesity. The underlying mechanism of anti-obesity effect of A. muricata was investigated. The fat mass and obesity associated protein (FTO) is a validated potential target for anti-obesity drugs. Methods: The interaction of compounds previously characterized from A. muricata was investigated against FTO using Autodock Vina. Also, modulation of FTO and STAT-3 mRNA expression by A. muricata was investigated in high fat diet induced obese rats (HFDR) using RT-PCR. Results: A significant up-regulation of FTO gene was observed in HFDR when compared to control rats, while administration of A. muricata (200 mg/kg) significantly (p < 0.05) down-regulated FTO gene expression when compared to HFDR group. The effect of obesity on STAT-3 gene expression was also reversed by A. muricata (200 mg/kg). In silico study revealed annonaine and annonioside (-9.2 kcal/mol) exhibited the highest binding affinity with FTO, followed by anonaine and isolaureline (-8.6 kcal/mol). Arg-96 is a critical amino acid enhancing anonaine, isolaureline-FTO binding. Conclusion: This study suggests the possible anti-obesity mechanism of A. muricata is via down-regulation of FTO with concomitant up-regulation of STAT-3 genes. This study confirmed the use of this plant in the management of obesity and the probable compounds responsible for its antiobesity effect are annonaine and annonioside.

5.
J Ethnopharmacol ; 242: 112026, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31260758

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Disturbed mitochondrial function and energy crisis serve as key mechanisms for the development of liver injury. Hence, targeting cellular mitochondria in liver diseases might serve as a therapeutic option. Tapinanthus globifer (A.Rich.) Tiegh. has been used in traditional medicine in the management of liver disease. However, there is no scientific evidence supporting such use. AIM OF THE STUDY: The current investigation was designed to evaluate the protective role of Tapinanthus globifer treatment on the liver mitochondrial function after the induction of hepatotoxicity by the hepatotoxic agent Fe2+in vitro. MATERIALS AND METHODS: In this study, isolated mitochondria from rats' liver was incubated with Fe2+ (10 µM) for 1 h in the absence or presence of T. globifer (50, 100 and 200 µg/mL) metanolic extract (MVA). Mitochondrial viability, mitochondrial membrane potential (ΔΨm), mitochondrial swelling (MPTP)., total thiol content, lipid peroxidation (TBARS) and reactive oxygen species (ROS) production were measured. HPLC-DAD was used to identify potential phytochemicals in MVA. RESULTS: (MVA) was able to improve mitochondrial dysfunction induced by Fe2+, by attenuating MTT reduction, increased ΔΨm and mitochondrial swelling. Reduced total thiol and non-protein thiol contents which were associated with increased lipid peroxidation and ROS generation in Fe2+-treated mitochondria were significantly improved by MVA co-treatment. HPLC-DAD analysis revealed the presence of gallic acid, catechin, epigallocatechin, caffeic acid, rutin, glycoside flavonoid and quercetin in MVA that can be responsible for its beneficial effect. CONCLUSION: MVA phyto-compounds enhance mitochondrial redox signaling and possess mitochondrial function improving potential, thereby, providing scientific basis for its use in traditional medicine.


Assuntos
Loranthaceae , Mitocôndrias Hepáticas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Ferro/toxicidade , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/fisiologia , Dilatação Mitocondrial/efeitos dos fármacos , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
6.
Pathophysiology ; 25(4): 365-371, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30017742

RESUMO

Hepatotoxicity occurs as a result of adverse effects of some xenobiotics on the liver, which is often the target tissue of toxicity for environmental chemicals. Rotenone, used as a natural pesticide, is an environmental poison reported to cause organ toxicity. This study investigated the protective effect of three flavonoids, catechin, quercetin and taxifolin (2,3-Dihydroquercetin) in rotenone-induced hepatotoxicity. Male Wistar rats were administered rotenone for 10 days followed by post treatment with catechin (5, 10 and 20 mg/kg), quercetin (5, 10 and 20 mg/kg) or taxifolin (0.25, 0.5 and 1 mg/kg), respectively, for 3 days. Bioindices of oxidative stress and hepatocellular injury were measured in serum and tissue homogenate of animals. Rotenone intoxication produced liver damage in rats as reflected in alterations to activities/levels of enzymic and non-enzymic oxidative stress markers and enzymes linked with inflammation, as well as the transaminases, gamma glutamyl transpeptidase, bilirubin, and lactate dehydrogenase. Catechin, quercetin and taxifolin post treatment significantly attenuated these (p < 0.0001) rotenone-induced imbalances. Comparatively, quercetin displayed the best apparent ameliorative activity. It clearly showed superior activity to catechin. However, taxifolin appeared to show comparable activity to quercetin and better activity than catechin in some of the assays despite being administered at considerably lower doses. The results provide insight on the relative efficacy and structure-activity relationships of the selected flavonoids in ameliorating liver damage and also indicate that additional structural and metabolic factors may be involved in the structure-activity relationships of flavonoids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...