Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313393, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573779

RESUMO

The meta-stable active layer morphology of organic solar cells (OSCs) is identified as the main cause of the rapid burn-in loss of power conversion efficiency (PCE) during long-term device operation. However, effective strategies to eliminate the associated loss mechanisms from the initial stage of device operation are still lacking, especially for high-efficiency material systems. Herein, the introduction of molecularly engineered dimer acceptors with adjustable thermal transition properties into the active layer of OSCs to serve as supramolecular stabilizers for regulating the thermal transitions and optimizing the crystallization of the absorber composites is reported. By establishing intimate π-π interactions with small-molecule acceptors, these stabilizers can effectively reduce the trap-state density (Nt) in the devices to achieve excellent PCEs over 19%. More importantly, the low Nt associated with an initially optimized morphology can be maintained under external stresses to significantly reduce the PCE burn-in loss in devices. This research reveals a judicious approach to improving OPV stability by establishing a comprehensive correlation between material properties, active-layer morphology, and device performance, for developing burn-in-free OSCs.

2.
ACS Nano ; 18(1): 136-154, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38146694

RESUMO

Organic solar cells (OSCs) represent one of the most important emerging photovoltaic technologies that can implement solar energy conversion efficiently. The chemical structure of organic semiconductors deployed in the active layer of OSCs plays a critical role in the photovoltaic performance and chemical/physical stability of relevant devices. With the structure innovation of organic semiconductors, especially nonfullerene acceptors (NFAs), the performance of OSCs have been promoted rapidly in recent years, with state-of-the-art power conversion efficiencies (PCEs) exceeding 19.5%. Compared with other photovoltaics like perovskite, the shortcoming of OSCs mainly lies in the high nonradiative recombination loss. However, the photocurrent density is superior in OSCs owing to the easy modulation of the NFA band gap toward the near-infrared region. In these regards, the effort to further boost the PCE of OSCs to achieve a milestone >21% should be devoted to reducing the nonradiative loss while further broadening the absorption band. Developing organic semiconductors with biaxially extended conjugated structures has provided a potential solution to achieve these goals. Herein, we summarize the design rules and performance progress of biaxially extended conjugated materials for OSCs. The descriptions are divided into two major categories, i.e., polymers and NFAs. For p-type polymers, we focus on the biaxial conjugation on some representative building blocks, e.g., polythiophene, triphenylamine, and quinoxaline. Whereas for n-type polymers, some structures with large conjugated planes in the normal direction are presented. We also elaborate on the biaxial conjugation strategies in NFAs with modification site at either the π-core or side-group. The general structure-property relationships are further retrieved within these materials, with focus on the short-wavelength absorption and nonradiative energy loss. Finally, we provide an outlook for the further structure modification strategies of biaxially conjugated materials toward highly efficient, stable, and industry-compatible OSCs.

3.
Angew Chem Int Ed Engl ; 62(46): e202311559, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37792667

RESUMO

Organic photovoltaics (OPV) are one of the most effective ways to harvest renewable solar energy, with the power conversion efficiency (PCE) of the devices soaring above 19 % when processed with halogenated solvents. The superior photocurrent of OPV over other emerging photovoltaics offers more opportunities to further improve the efficiency. Tailoring the absorption band of photoactive materials is an effective way to further enhance OPV photocurrent. However, the field has mostly been focusing on improving the near-infrared region photo-response, with the absorption shoulders in short-wavelength region (SWR) usually being neglected. Herein, by developing a series of non-fullerene acceptors (NFAs) with varied side-group conjugations, we observe an enhanced SWR absorption band with increased side-group conjugation length. The underpinning factors of how molecular structures and geometries improve SWR absorption are clearly elucidated through theoretical modelling and crystallography. Moreover, a clear relationship between the enhanced SWR absorption and reduced singlet-triplet energy gap is established, both of which are favorable for the OPV performance and can be tailored by rational structure design of NFAs. Finally, the rationally designed NFA, BO-TTBr, affords a decent PCE of 18.5 % when processed with a non-halogenated green solvent.

4.
Adv Mater ; 35(32): e2302861, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37164341

RESUMO

Sequentially deposited organic solar cells (SD-OSCs) have attracted great attention owing to their ability in achieving a more favorable, vertically phase-separated morphology to avoid the accumulation of counter charges at absorber/transporting layer interfaces. However, the processing of SD-OSCs is still quite challenging in preventing the penetration of small-molecule acceptors into the polymer donor layer via erosion or swelling. Herein, solid additives (SAs) with varied electrostatic potential distributions and steric hinderance are introduced into SD-OSCs to investigate the effect of evaporation dynamics and selective interaction on vertical component distribution. Multiple modelings indicate that the π-π interaction dominates the interactions between aromatic SAs and active layer components. Among them, p-dibromobenzene shows a stronger interaction with the donor while 2-chloronaphthalene (2-CN) interacts more preferably with acceptor. Combining the depth-dependent morphological study aided by multiple X-ray scattering methods, it is concluded that the evaporation of SAs can drive the stronger-interaction component upward to the surface, while having minor impact on the overall molecular packing. Ultimately, the 2-CN-treated devices with reduced acceptor concentration at the bottom surface deliver a high power conversion efficiency of 19.2%, demonstrating the effectiveness of applying selective interactions to improve the vertical morphology of OSCs by using SAs with proper structure.

5.
J Am Chem Soc ; 145(10): 5909-5919, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36877211

RESUMO

Organic photovoltaics (OPVs) have achieved great progress in recent years due to delicately designed non-fullerene acceptors (NFAs). Compared with tailoring of the aromatic heterocycles on the NFA backbone, the incorporation of conjugated side-groups is a cost-effective way to improve the photoelectrical properties of NFAs. However, the modifications of side-groups also need to consider their effects on device stability since the molecular planarity changes induced by side-groups are related to the NFA aggregation and the evolution of the blend morphology under stresses. Herein, a new class of NFAs with local-isomerized conjugated side-groups are developed and the impact of local isomerization on their geometries and device performance/stability are systematically investigated. The device based on one of the isomers with balanced side- and terminal-group torsion angles can deliver an impressive power conversion efficiency (PCE) of 18.5%, with a low energy loss (0.528 V) and an excellent photo- and thermal stability. A similar approach can also be applied to another polymer donor to achieve an even higher PCE of 18.8%, which is among the highest efficiencies obtained for binary OPVs. This work demonstrates the effectiveness of applying local isomerization to fine-tune the side-group steric effect and non-covalent interactions between side-group and backbone, therefore improving both photovoltaic performance and stability of fused ring NFA-based OPVs.

6.
Nat Commun ; 13(1): 5946, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209165

RESUMO

Power conversion efficiency and long-term stability are two critical metrics for evaluating the commercial potential of organic photovoltaics. Although the field has witnessed a rapid progress of efficiency towards 19%, the intrinsic trade-off between efficiency and stability is still a challenging issue for bulk-heterojunction cells due to the very delicate crystallization dynamics of organic species. Herein, we developed a class of non-fullerene acceptors with varied side groups as an alternative to aliphatic chains. Among them, the acceptors with conjugated side groups show larger side-group torsion and more twisted backbone, however, they can deliver an efficiency as high as 18.3% in xylene-processed cells, which is among the highest values reported for non-halogenated solvent processed cells. Meanwhile, decent thermal/photo stability is realized for these acceptors containing conjugated side groups. Through the investigation of the geometry-performance-stability relationship, we highlight the importance of side-group steric hinderance of acceptors in achieving combined high-performance, stable, and eco-friendly organic photovoltaics.

7.
Angew Chem Int Ed Engl ; 61(33): e202205168, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736791

RESUMO

Intramolecular Cl-S non-covalent interaction is introduced to modify molecular backbone of a benzodithiophene terthiophene rhodamine (BTR) benchmark structure, helping planarize and rigidify the molecular framework for improving charge transport. Theoretical simulations and temperature-variable NMR experiments clearly validate the existence of Cl-S non-covalent interaction in two designed chlorinated donors and explain its important role in enhancing planarity and rigidity of the molecules for enhancing their crystallinity. The asymmetric isomerization of side-chains further optimizes the molecular orientation and surface energy to strike a balance between its crystallinity and miscibility. This carefully manipulated molecular design helps result in increased carrier mobility and suppressed charge recombination to obtain simultaneously enhanced short-circuit current (Jsc ) and fill factor (FF) and a very high efficiency of 15.73 % in binary all-small-molecule organic solar cells.

8.
Adv Mater ; 34(33): e2202608, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35748129

RESUMO

A major challenge hindering the further development of all-polymer solar cells (all-PSCs) employing polymerized small-molecule acceptors is the relatively low fill factor (FF) due to the difficulty in controlling the active-layer morphology. The issues typically arise from oversized phase separation resulting from the thermodynamically unfavorable mixing between two macromolecular species, and disordered molecular orientation/packing of highly anisotropic polymer chains. Herein, a facile top-down controlling strategy to engineer the morphology of all-polymer blends is developed by leveraging the layer-by-layer (LBL) deposition. Optimal intermixing of polymer components can be achieved in the two-step process by tuning the bottom-layer polymer swelling during top-layer deposition. Consequently, both the molecular orientation/packing of the bottom layer and the molecular ordering of the top layer can be optimized with a suitable top-layer processing solvent. A favorable morphology with gradient vertical composition distribution for efficient charge transport and extraction is therefore realized, affording a high all-PSC efficiency of 17.0% with a FF of 76.1%. The derived devices also possess excellent long-term thermal stability and can retain >90% of their initial efficiencies after being annealed at 65 °C for 1300 h. These results validate the distinct advantages of employing an LBL processing protocol to fabricate high-performance all-PSCs.

9.
Acc Chem Res ; 54(20): 3906-3916, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34606230

RESUMO

ConspectusOrganic photovoltaics (OPVs) with a photoactive layer containing a blend of organic donor and acceptor species are considered to be a promising technology for clean energy owing to their unique flexible form factor and good solution processability that can potentially address the scalability challenges. The delicate designs of both donors and acceptors have significantly enhanced the power conversion efficiency of OPVs to more than 18%. Nonfullerene small-molecule acceptors (NFAs) have played a critical role in enhancing the short-circuit current density (JSC) by efficiently harvesting near-infrared (NIR) sunlight. To take full advantage of the abundant NIR photons, the optical band gap of NFAs should be further reduced to improve the performance of OPVs. Incorporating highly polarizable selenium atoms onto the backbone of organic conjugated materials has been proven to be an effective way to decrease their optical band gap. For example, a selenium-substituted NFA recently developed by our group has attained a JSC of approximate 27.5 mA cm-2 in OPV devices, surpassing those of most emerging photovoltaic systems. Inspired by this advance, we concentrate on the topic of selenium-containing materials in this Account to incite readers' interest in further exploring this series of materials.In this Account, we first compare the differences among chalcogen heterocycles and discuss the influence of fundamental electronic behavior on the collective photoelectrical properties of the resulting materials. The superior features of selenium-substituted materials are summarized as follows: (1) The large covalent radius of selenium can diminish the π-orbital overlap, rendering enhanced quinoidal resonance character and a narrowed optical band gap of resulting materials. (2) The selenium atom is more polarizable than sulfur owing to its larger and looser outermost electron cloud, enabling enhanced intermolecular Se-Se interaction and increased charge carrier mobility of relevant materials in the solid state. We then focus on summarizing the design rules for various categories of selenium-containing materials including polymer donors, small-molecule acceptors, and polymer acceptors, especially those composed of ladder-type polycyclic units. The motivation for incorporating selenium atoms into these materials and the structure-property relationships were thoroughly elucidated. Specifically, we discuss the changes in the optical band gap, charge carrier mobility, and molecular packing induced by selenium substitution and correlate the effects of these changes with the exciton behaviors, energy loss, and nanoscale film morphology of corresponding OPV devices. Furthermore, we point out the intrinsic stability of selenium-containing materials under maximum-power-point tracking and long-term photo- or thermostress and indicate their potential use in semitransparent and tandem solar cells. At the end, the prospect of future research focuses and the possible applications of selenium-containing materials in the OPV field are discussed.

10.
ACS Appl Mater Interfaces ; 13(36): 43795-43805, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34464077

RESUMO

Due to their low-temperature deposition, high mobility (>10 cm2/V·s), and electrical conductivity, amorphous ionic oxide semiconductors (AIOSs) have received much attention for their applications in flexible and/or organic electro-optical devices. Here, we report on a study of the flexibility of CdO-In2O3 alloy thin films, deposited on a polyethylene terephthalate (PET) substrate by radio frequency magnetron sputtering at room temperature. Cd1-xInxO1+δ alloys with the composition of x > 0.6 are amorphous, exhibiting a high electron mobility of 40-50 cm2/V·s, a low resistivity of ∼3 × 10-4 Ω·cm, and high transmittance over a wide spectral window of 350 to >1600 nm. The flexibility of both crystalline and amorphous Cd1-xInxO1+δ films on the PET substrate was investigated by measuring their electrical resistivity after both compressive and tensile bending with a range of bending radii and repeated bending cycles. Under both compressive and tensile bending with Rb = 16.5 mm, no significant degradation was observed for both the crystalline and amorphous films up to 300 bending cycles. For a smaller bending radius, the amorphous film shows much less electrical degradation than the crystalline films under compressive bending due to less film delamination at the bending sites. On the other hand, for a small bending radius (<16 mm), both crystalline and amorphous films degrade after repeated tensile bending, most likely due to the development of microcracks in the films. To demonstrate the application of amorphous Cd1-xInxO1+δ alloy in photovoltaics, we fabricated perovskite and bulk-heterojunction organic solar cells (OSCs) on glass and flexible PET utilizing amorphous Cd1-xInxO1+δ layers as transparent electrodes. The organic-inorganic hybrid perovskite solar cells (PSCs) exhibit a power conversion efficiency (PCE) of ∼11 to 12% under both front and back illumination, demonstrating good bifacial performance with bifaciality factor >90%. The OSCs fabricated on an amorphous Cd1-xInxO1+δ-coated flexible PET substrate achieve a promising PCE of 12.06%. Our results strongly suggest the technological potentials of amorphous Cd1-xInxO1+δ as a reliable and effective transparent conducting material for flexible and organic optoelectronic devices.

11.
Nat Commun ; 10(1): 4100, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506443

RESUMO

Naphthalenediimide-based n-type polymeric semiconductors are extensively used for constructing high-performance all-polymer solar cells (all-PSCs). For such all-polymer systems, charge recombination can be reduced by using thinner active layers, yet suffering insufficient near-infrared light harvesting from the polymeric acceptor. Conversely, increasing the layer thickness overcomes the light harvesting issue, but at the cost of severe charge recombination effects. Here we demonstrate that to manage light propagation within all-PSCs, a thick bulk-heterojunction film of approximately 350 nm is needed to effectively enhance photo-harvesting in the near-infrared region. To overcome the severe charge recombination in such a thick film, a non-halogenic additive is used to induce a well-ordered micro-structure that inherently suppresses recombination loss. The combined strategies of light management and delicate morphology optimization lead to a promising efficiency over 10% for thick-film all-PSCs with active area of 1 cm2, showing great promise for future large-scale production and application of all-PSCs.

12.
Chem Asian J ; 14(18): 3109-3118, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31376335

RESUMO

All-polymer solar cells (all-PSCs), with the photoactive layer exclusively composed of polymers as both donor and acceptor, have attracted growing attention due to their unique merits in optical, thermal and mechanical durability. Through the combined strategies in materials design and device engineering, recently the power conversion efficiencies of single-junction all-PSCs have been boosted up to 11 %. This review focuses on the recent progress of all-PSCs comprising of wide band-gap p-type polymers, especially those based on the units of thieno[3,4-c]pyrrole-4,6(5H)-dione], fluorinated benzotriazole, benzo[1,2-c:4,5-c']dithiophene-4,8-dione, and pyrrolo[3,4-f]benzotriazole-5,7(6H)-dione. Meantime, several categories of n-type polymers used to match with these polymer donors are also reviewed. Finally, a brief summary of the strategies of molecular design and morphology optimization is given, and strategies toward further improving performance of all-PSCs are outlined.

13.
ACS Appl Mater Interfaces ; 11(8): 8350-8356, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30697994

RESUMO

The ideal bulk-heterojunction for high-performance organic photodetectors prefers a morphology with a vertically gradient component to suppress the leaking current. Here, we demonstrate an all-polymer photodetector with a segregated bulk-heterojunction active layer. This all-polymer photodetector exhibits a dramatically reduced dark current density because of its built-in charge blocking layer, with a responsivity of 0.25 A W-1 at a wavelength of approximately 600 nm and specific detectivity of 5.68 × 1012 cm Hz1/2 W-1 as calculated from the noise spectra at 1 kHz. To our knowledge, this is among the best performances reported for photodetectors based on both polymeric donor and acceptor in the photoactive layer. These findings present a facile approach to improving the specific detectivity of polymer photodetectors via a layer-by-layer solution process.

14.
Adv Mater ; : e1803166, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044006

RESUMO

All-polymer solar cells (all-PSCs) that contain both p-type and n-type polymeric materials blended together as light-absorption layers have attracted much attention, since the blend of a polymeric donor and acceptor should present superior photochemical, thermal, and mechanical stability to those of small molecular-based organic solar cells. In this work, the interfacial stability is studied by using highly stable all-polymer solar cell as a platform. It is found that the thermally deposited metal electrode atoms can diffuse into the active layer during device storage, which consequently greatly decreases the power conversion efficiency. Fortunately, the diffusion of metal atoms can be slowed down and even blocked by using thicker interlayer materials, high-glass-transition-temperature interlayer materials, or a tandem device structure. Learning from this, homojunction tandem all-PSCs are successfully developed that simultaneously exhibit a record power conversion efficiency over 11% and remarkable stability with efficiency retaining 93% of the initial value after thermally aging at 80 °C for 1000 h.

15.
ACS Appl Mater Interfaces ; 10(26): 22495-22503, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29931969

RESUMO

Two novel wide-band gap donor-acceptor-type conjugated copolymers, PTzBI-S and PTzBI-Ph, are designed and synthesized, based on alkylthio-thienyl- or alkylphenyl-substituted benzodithiophene (BDT) derivatives as the electron-donating unit and pyrrolo[3,4- f]benzotriazole-5,7(6 H)-dione as the electron-withdrawing unit. The as-generated copolymers show the comparable optical and electrochemical properties. The alkylthio-thienyl-substituted BDT unit facilities a benign decrease of the highest occupied molecular orbital (HOMO) levels. This consequently enhances open-circuit voltages ( VOC) over 0.9 V in relevant solar cells with the fullerene acceptor ([6, 6]-phenyl-C71-butyric acid methyl ester, PC71BM) or the nonfullerene acceptor (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3- d:2',3'- d']- s-indaceno[1,2- b:5,6- b']dithiophene, ITIC). The combination studies of Fourier transform photocurrent spectroscopy and electroluminescence further rationalize the VOC difference between solar cells with fullerene and nonfullerene acceptors. An impressively high power conversion efficiency of 10.19% is obtained for the device based on PTzBI-Ph:ITIC, outperforming the 8.84% achieved by the PC71BM-based device. Our results demonstrate that the modification of substituents of BDT units can effectively decrease the HOMO level and consequently improve VOC, ultimately allowing the attainment of high-efficiency polymer solar cells.

16.
Macromol Rapid Commun ; 39(14): e1700765, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29436082

RESUMO

The design and synthesis of three n-type conjugated polymers based on a naphthalene diimide-thiophene skeleton are presented. The control polymer, PNDI-2HD, has two identical 2-hexyldecyl side chains, and the other polymers have different alkyl side chains; PNDI-EHDT has a 2-ethylhexyl and a 2-decyltetradecyl side chain, and PNDI-BOOD has a 2-butyloctyl and a 2-octyldodecyl side chain. These copolymers with different alkyl side chains exhibit higher melting and crystallization temperatures, and stronger aggregation in solution, than the control copolymer PNDI-2HD that has the same side chain. Polymer solar cells based on the electron-donating copolymer PTB7-Th and these novel copolymers exhibit nearly the same open-circuit voltage of 0.77 V. Devices based on the copolymer PNDI-BOOD with different side chains have a power-conversion efficiency of up to 6.89%, which is much higher than the 4.30% obtained with the symmetric PNDI-2HD. This improvement can be attributed to the improved charge-carrier mobility and the formation of favorable film morphology. These observations suggest that the molecular design strategy of incorporating different side chains can provide a new and promising approach to developing n-type conjugated polymers.


Assuntos
Imidas/química , Naftalenos/química , Polímeros/química , Energia Solar , Elétrons , Estrutura Molecular , Tiofenos/química
17.
Adv Mater ; 29(47)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29112320

RESUMO

A novel wide-bandgap conjugated copolymer based on an imide-functionalized benzotriazole building block containing a siloxane-terminated side-chain is developed. This copolymer is successfully used to fabricate highly efficient all-polymer solar cells (all-PSCs) processed at room temperature with the green-solvent 2-methyl-tetrahydrofuran. When paired with a naphthalene diimide-based polymer electron-acceptor, the all-PSC exhibits a maximum power conversion efficiency (PCE) of 10.1%, which is the highest value so far reported for an all-PSC. Of particular interest is that the PCE remains 9.4% after thermal annealing at 80 °C for 24 h. The resulting high efficiency is attributed to a combination of high and balanced bulky charge carrier mobility, favorable face-on orientation, and high crystallinity. These observations indicate that the resulting copolymer can be a promising candidate toward high-performance all-PSCs for practical applications.

18.
ACS Appl Mater Interfaces ; 9(42): 37087-37093, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28985459

RESUMO

We designed and synthesized two isomeric nonfullerene acceptors, IFBR-p and IFBR-d. These molecular semiconductors contain indacenodithiophene (IDT) as the central unit, adjacent asymmetric 5-fluorobenzo[c][1,2,5]thiadiazole units, and are flanked with rhodanine as the peripheral units. The orientation of the two fluorine atoms (proximal, p, or distal, d), relative to IDT impacts most severely the film morphologies when blended with the electron-donating polymer PTzBI. Polymer solar cells based on PTzBI:IFBR-p give rise to a power conversion efficiency (7.3 ± 0.2%) that is higher than what is achieved with PTzBI:IFBR-d (5.2 ± 0.1%). This difference is attributed to the lower tendency for (over)crystallization by IFBR-p and the resulting more favorable morphology of the photoactive layer. These results highlight the subtle impact of substitution regiochemistry on the properties of nonfullerene acceptors through modulation of their self-assembly tendencies.

19.
Adv Mater ; 29(21)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28333391

RESUMO

High-performance nonfullerene polymer solar cells (PSCs) are developed by integrating the nonfullerene electron-accepting material 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophne) (ITIC) with a wide-bandgap electron-donating polymer PTzBI or PTzBI-DT, which consists of an imide functionalized benzotriazole (TzBI) building block. Detailed investigations reveal that the extension of conjugation can affect the optical and electronic properties, molecular aggregation properties, charge separation in the bulk-heterojunction films, and thus the overall photovoltaic performances. Single-junction PSCs based on PTzBI:ITIC and PTzBI-DT:ITIC exhibit remarkable power conversion efficiencies (PCEs) of 10.24% and 9.43%, respectively. To our knowledge, these PCEs are the highest efficiency values obtained based on electron-donating conjugated polymers consisting of imide-functionalized electron-withdrawing building blocks. Of particular interest is that the resulting device based on PTzBI exhibits remarkable PCE of 7% with the thickness of active layer of 300 nm, which is among the highest values of nonfullerene PSCs utilizing thick photoactive layer. Additionally, the device based on PTzBI:ITIC exhibits prominent stability, for which the PCE remains as 9.34% after thermal annealing at 130 °C for 120 min. These findings demonstrate the great promise of using this series of wide-bandgap conjugated polymers as electron-donating materials for high-performance nonfullerene solar cells toward high-throughput roll-to-roll processing technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...