Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1093842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207190

RESUMO

Introduction: Extended-spectrum ß-lactamase (ESBL)-producing Enterobacteriaceae pose a huge threat to human health, especially in the context of complicated urinary tract infections (cUTIs). Carbapenems and piperacillin-tazobactam (PTZ) are two antimicrobial agents commonly used to treat cUTIs. Methods: A monocentric retrospective cohort study focused on the treatment of cUTIs in adults was conducted from January 2019 to November 2021. Patients with a positive urine culture strain yielding ≥ 103 colony-forming units per milliliter (CFU/mL), and sensitive to PTZ and carbapenems, were included. The primary endpoint was clinical success after antibiotic therapy. The secondary endpoint included rehospitalization and 90-day recurrence of cUTIs caused by ESBL-producing Enterobacteriaceae. Results: Of the 195 patients included in this study, 110 were treated with PTZ while 85 were administered meropenem. The rate of clinical cure was similar between the PTZ and meropenem groups (80% vs. 78.8%, p = 0.84). However, the PTZ group had a lower duration of total antibiotic use (6 vs. 9; p < 0.01), lower duration of effective antibiotic therapy (6 vs. 8; p < 0.01), and lower duration of hospitalization (16 vs. 22; p < 0.01). Discussion: In terms of adverse events, the safety of PTZ was higher than that of meropenem in the treatment of cUTIs.


Assuntos
Infecções por Enterobacteriaceae , Pielonefrite , Infecções Urinárias , Adulto , Humanos , Meropeném/uso terapêutico , Piperacilina/efeitos adversos , Estudos Retrospectivos , Inibidores de beta-Lactamases/uso terapêutico , Ácido Penicilânico/efeitos adversos , Antibacterianos/efeitos adversos , Combinação Piperacilina e Tazobactam/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Pielonefrite/tratamento farmacológico , Enterobacteriaceae , Carbapenêmicos/uso terapêutico , beta-Lactamases/uso terapêutico , Infecções por Enterobacteriaceae/tratamento farmacológico
2.
Mol Pain ; 18: 17448069221121562, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35976914

RESUMO

Neuropathic pain takes a heavy toll on individual well-being, while current therapy is far from desirable. Herein, we assessed the analgesic effect of ß-elemene, a chief component in the traditional Chinese medicine Curcuma wenyujin, and explored the underlying mechanisms at the level of spinal dorsal horn (SDH) under neuropathic pain. A spared nerve injury (SNI)-induced neuropathic pain model was established in rats. Intraperitoneal injection (i.p.) of ß-elemene was administered for 21 consecutive days. Mechanical allodynia was explored by von Frey filaments. The activation of the mitogen-activated protein kinase (MAPK) family (including ERK, p38, and JNK) in spinal neurons, astrocytes, and microglia was evaluated using immunostaining 29 days after SNI surgery. The expression of GFAP, Iba-1, p-ERK, p-JNK, and p-p38 within the SDH was measured using immunoblotting. The levels of proinflammatory cytokines (including TNF-α, IL-1ß, and IL-6) were measured with ELISA. The levels of oxidative stress indicators (including MDA, SOD, and GSH-PX) were detected using biochemical tests. Consecutive i.p. administration of ß-elemene relieved SNI-induced mechanical allodynia (with an EC50 of 16.40 mg/kg). SNI significantly increased the expression of p-ERK in spinal astrocytes but not microglia on day 29. ß-elemene reversed spinal astrocytic ERK activation and subsequent upregulation of proinflammatory cytokines in SNI rats, with no effect on the expression of p38 and JNK in spinal glia. ß-elemene also exerted antioxidative effects by increasing the levels of SOD and GSH-PX and decreasing the level of MDA. Our results suggest that SNI induces robust astrocytic ERK activation within the SDH in the late phase of neuropathic pain. ß-elemene exerts remarkable analgesic effects on neuropathic pain, possibly by inhibiting spinal astrocytic ERK activation and subsequent neuroinflammatory processes. Our findings suggest that ß-elemene might be a promising analgesic for the treatment of chronic pain.


Assuntos
Hiperalgesia , Neuralgia , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Ratos , Ratos Sprague-Dawley , Sesquiterpenos , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo
3.
Neuron ; 110(12): 1993-2008.e6, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35443154

RESUMO

Empathic pain has attracted the interest of a substantial number of researchers studying the social transfer of pain in the sociological, psychological, and neuroscience fields. However, the neural mechanism of empathic pain remains elusive. Here, we establish a long-term observational pain model in mice and find that glutamatergic projection from the insular cortex (IC) to the basolateral amygdala (BLA) is critical for the formation of observational pain. The selective activation or inhibition of the IC-BLA projection pathway strengthens or weakens the intensity of observational pain, respectively. The synaptic molecules are screened, and the upregulated synaptotagmin-2 and RIM3 are identified as key signals in controlling the increased synaptic glutamate transmission from the IC to the BLA. Together, these results reveal the molecular and synaptic mechanisms of a previously unidentified neural pathway that regulates observational pain in mice.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Animais , Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Cerebral/fisiologia , Ácido Glutâmico/fisiologia , Córtex Insular , Camundongos , Dor , Sinapses
4.
Neurosci Bull ; 38(4): 342-358, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34907496

RESUMO

Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.


Assuntos
Dor Crônica , Pancreatite Crônica , Animais , Ansiedade/etiologia , Dor Crônica/etiologia , Neurônios GABAérgicos , Giro do Cíngulo/metabolismo , Hiperalgesia/metabolismo , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/complicações , Pancreatite Crônica/patologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Trinitrobenzenossulfônico/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade
5.
World J Gastroenterol ; 25(40): 6077-6093, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31686764

RESUMO

BACKGROUND: Central sensitization plays a pivotal role in the maintenance of chronic pain induced by chronic pancreatitis (CP). We hypothesized that the nucleus tractus solitarius (NTS), a primary central site that integrates pancreatic afferents apart from the thoracic spinal dorsal horn, plays a key role in the pathogenesis of visceral hypersensitivity in a rat model of CP. AIM: To investigate the role of the NTS in the visceral hypersensitivity induced by chronic pancreatitis. METHODS: CP was induced by the intraductal injection of trinitrobenzene sulfonic acid (TNBS) in rats. Pancreatic hyperalgesia was assessed by referred somatic pain via von Frey filament assay. Neural activation of the NTS was indicated by immunohistochemical staining for Fos. Basic synaptic transmission within the NTS was assessed by electrophysiological recordings. Expression of vesicular glutamate transporters (VGluTs), N-methyl-D-aspartate receptor subtype 2B (NR2B), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subtype 1 (GluR1) was analyzed by immunoblotting. Membrane insertion of NR2B and GluR1 was evaluated by electron microscopy. The regulatory role of the NTS in visceral hypersensitivity was detected via pharmacological approach and chemogenetics in CP rats. RESULTS: TNBS treatment significantly increased the number of Fos-expressing neurons within the caudal NTS. The excitatory synaptic transmission was substantially potentiated within the caudal NTS in CP rats (frequency: 5.87 ± 1.12 Hz in CP rats vs 2.55 ± 0.44 Hz in sham rats, P < 0.01; amplitude: 19.60 ± 1.39 pA in CP rats vs 14.71 ± 1.07 pA in sham rats; P < 0.01). CP rats showed upregulated expression of VGluT2, and increased phosphorylation and postsynaptic trafficking of NR2B and GluR1 within the caudal NTS. Blocking excitatory synaptic transmission via the AMPAR antagonist CNQX and the NMDAR antagonist AP-5 microinjection reversed visceral hypersensitivity in CP rats (abdominal withdraw threshold: 7.00 ± 1.02 g in CNQX group, 8.00 ± 0.81 g in AP-5 group and 1.10 ± 0.27 g in saline group, P < 0.001). Inhibiting the excitability of NTS neurons via chemogenetics also significantly attenuated pancreatic hyperalgesia (abdominal withdraw threshold: 13.67 ± 2.55 g in Gi group, 2.00 ± 1.37 g in Gq group, and 2.36 ± 0.67 g in mCherry group, P < 0.01). CONCLUSION: Our findings suggest that enhanced excitatory transmission within the caudal NTS contributes to pancreatic pain and emphasize the NTS as a pivotal hub for the processing of pancreatic afferents, which provide novel insights into the central sensitization of painful CP.


Assuntos
Dor Crônica/fisiopatologia , Sistema Nervoso Entérico/fisiopatologia , Hiperalgesia/fisiopatologia , Pancreatite Crônica/complicações , Núcleo Solitário/fisiopatologia , Vias Aferentes/fisiopatologia , Animais , Dor Crônica/etiologia , Modelos Animais de Doenças , Humanos , Hiperalgesia/etiologia , Masculino , Neurônios/fisiologia , Pâncreas/inervação , Pancreatite Crônica/induzido quimicamente , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia , Técnicas Estereotáxicas , Transmissão Sináptica/fisiologia , Ácido Trinitrobenzenossulfônico/toxicidade
6.
Mol Brain ; 12(1): 76, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484535

RESUMO

Central sensitization plays a pivotal role in the maintenance of chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. This study was designed to examine the role of anterior insular cortex (aIC) in the pathogenesis of hyperalgesia in a rat model of CP. CP was induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). Abdomen hyperalgesia and anxiety were assessed by von Frey filament and open field tests, respectively. Two weeks after surgery, the activation of aIC was indicated by FOS immunohistochemical staining and electrophysiological recordings. Expressions of VGluT1, NMDAR subunit NR2B and AMPAR subunit GluR1 were analyzed by immunoblottings. The regulatory roles of aIC in hyperalgesia and pain-related anxiety were detected via pharmacological approach and chemogenetics in CP rats. Our results showed that TNBS treatment resulted in long-term hyperalgesia and anxiety-like behavior in rats. CP rats exhibited increased FOS expression and potentiated excitatory synaptic transmission within aIC. CP rats also showed up-regulated expression of VGluT1, and increased membrane trafficking and phosphorylation of NR2B and GluR1 within aIC. Blocking excitatory synaptic transmission significantly attenuated abdomen mechanical hyperalgesia. Specifically inhibiting the excitability of insular pyramidal cells reduced both abdomen hyperalgesia and pain-related anxiety. In conclusion, our findings emphasize a key role for aIC in hyperalgesia and anxiety of painful CP, providing a novel insight into cortical modulation of painful CP and shedding light on aIC as a potential target for neuromodulation interventions in the treatment of CP.


Assuntos
Córtex Cerebral/patologia , Hiperalgesia/etiologia , Hiperalgesia/patologia , Pancreatite Crônica/complicações , Pancreatite Crônica/patologia , Abdome/patologia , Animais , Ansiedade/complicações , Ansiedade/patologia , Ansiedade/fisiopatologia , Comportamento Animal , Membrana Celular/metabolismo , Córtex Cerebral/fisiopatologia , Ácido Glutâmico/metabolismo , Hiperalgesia/fisiopatologia , Hipersensibilidade/complicações , Hipersensibilidade/patologia , Potenciação de Longa Duração , Masculino , Neurotransmissores/metabolismo , Pancreatite Crônica/fisiopatologia , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Ácido Trinitrobenzenossulfônico
7.
Cell Physiol Biochem ; 51(1): 46-62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30439713

RESUMO

BACKGROUND/AIMS: This study was developed to investigate a potential therapeutic method for myocardial ischemia/reperfusion injury involving the promotion of miR-24-3p expression. METHODS: Microarray analysis was used to screen differentially expressed genes in a myocardial ischemia/reperfusion (I/R) injury mouse model. Gene set enrichment analysis was utilized to determine vital signaling pathways. Targeting verification was conducted with a luciferase reporter assay. Myocardial I/R injury was developed in mice, and the expression levels of RIPK1 and miR-24-3p were investigated by qRT-PCR and Western blot. Hemodynamic parameters and the activity of serum myocardial enzymes were measured to evaluate cardiac function. Infarct area was observed through HE and TTC staining. Myocardial cell apoptosis was examined by TUNEL staining and caspase-3 activity analysis. RESULTS: RIPK1 was an upregulated mRNA found by microarray analysis and a verified target of the downregulated miRNA miR-24-3p. The upregulation of RIPK1 (1.8-fold) and the downregulation of miR-24-3p (0.3-fold) were confirmed in I/R mice. RIPK1 led to impaired cardiac function indexes, increased infarct area and cell apoptosis, while miR-24-3p could reverse the injury by regulating RIPK1. The TNF signaling pathway was proven to be involved in myocardial I/R injury through the detection of the dysregulation of related proteins. CONCLUSION: In conclusion, RIPK1 was upregulated and miR-24-3p was downregulated in a myocardial I/R injury mouse model. RIPK1 could aggravate myocardial I/R injury via the TNF signaling pathway, while miR-24-3p could suppress RIPK1 and therefore exert cardioprotective effects in myocardial I/R injury.


Assuntos
MicroRNAs/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Análise por Conglomerados , Creatina Quinase Forma MB/sangue , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais , Fatores de Necrose Tumoral/metabolismo , Função Ventricular Esquerda/fisiologia
8.
J Thorac Cardiovasc Surg ; 148(1): 73-6, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24075558

RESUMO

OBJECTIVE: The major atrial ganglionated plexi (GP) can initiate atrial fibrillation alone without any contribution from the extrinsic cardiac nervous system. However, if stimulation of the ventricular GP, especially the aortic root GP, can provoke atrial fibrillation (AF) alone is unknown. Our study was designed to investigate the independent role of aortic root GP activity in the initiation of AF. METHODS: In 10 Langendorff-perfused canine hearts, the atrial effective refractory period, pulmonary vein effective refractory period, and percentage of AF induced were measured at baseline and during aortic root GP stimulation. RESULTS: Stimulation of the aortic root GP shortened the atrial effective refractory period from 128 ± 10 ms at baseline to 103 ± 15 ms (P < .05) and shortened the pulmonary vein effective refractory period from 139 ± 14 ms to 114 ± 15 ms (P < .05). Furthermore, the percentage of AF induced in the 10 isolated hearts increased from 10% at baseline to 90% during aortic root GP stimulation (P < .05). CONCLUSIONS: In Langendorff-perfused canine hearts, stimulation of the aortic root GP provokes AF in the absence of any extrinsic cardiac nerve activity. The aortic root GP is an important element in the intrinsic neuronal loop that can increase the risk of AF in isolated heart models.


Assuntos
Fibrilação Atrial/fisiopatologia , Gânglios Autônomos/fisiopatologia , Ventrículos do Coração/fisiopatologia , Potenciais de Ação , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/etiologia , Estimulação Cardíaca Artificial , Modelos Animais de Doenças , Cães , Técnicas Eletrofisiológicas Cardíacas , Feminino , Masculino , Perfusão , Veias Pulmonares/inervação , Período Refratário Eletrofisiológico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...