Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 482-489, 2024 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-39223012

RESUMO

Objective To investigate the effects of pterostilbene on human colon cancer LoVo cells and study the regulatory mechanism of nuclear factor E2-related factor 2 (Nrf2) in the process of pterostilbene acting on LoVo cells. Methods LoVo cells were treated with different concentrations (5,10,20,40,60,80,100 µmol/L) of pterostilbene.Cell viability,migration,invasion,and apoptosis were examined by CCK-8,scratch,Transwell,and TUNEL assays,respectively.The mitochondrial membrane potential was measured by the mitochondrial membrane potential assay kit with JC-1.The reactive oxygen species level was measured by 2',7'-dichlorofluorescein diacetate.The protein levels of Nrf2,phosphorylated Nrf2,heme oxygenase 1,and apoptotic proteins (Bcl2 and Bax) were determined by Western blotting.In addition,cell viability,Nrf2 expression,and apoptosis rate were determined after co-application of the Nrf2-specific agonist sulforaphane. Results Compared with the control group,40,60,80,100 µmol/L pterostilbene reduced the viability of LoVo cells (P=0.014,P<0.001,P<0.001,P<0.001).Pterostilbene at 5,10,20 µmol/L did not show effects on cell viability but inhibited cell migration (P=0.008,P<0.001,P<0.001) and invasion (all P<0.001).Pterostilbene at 40,60,80 µmol/L increased apoptosis (P=0.014,P<0.001,P<0.001),promoted mitochondrial membrane potential depolarization (P=0.026,P<0.001,P<0.001) and reactive oxygen species accumulation (all P<0.001),and down-regulated the expression of phosphorylated Nrf2 (P=0.030,P<0.001,P<0.001),heme oxygenase 1 (P=0.015,P<0.001,P<0.001),and Bcl2 (P=0.039,P<0.001,P<0.001) in LoVo cells.Pterostilbene at 60,80 µmol/L down-regulated Nrf2 expression (P=0.001,P<0.001) and up-regulated Bax expression (both P<0.001).The application of sulforaphane reversed the effects of pterostilbene on cell viability (P<0.001),apoptosis (P<0.001),and Nrf2 expression (P=0.022). Conclusion Pterostilbene is a compound that can effectively inhibit colon cancer cells by inhibiting the Nrf2 pathway.


Assuntos
Apoptose , Neoplasias do Colo , Fator 2 Relacionado a NF-E2 , Estilbenos , Humanos , Estilbenos/farmacologia , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
Br J Pharmacol ; 175(21): 4137-4153, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30051466

RESUMO

BACKGROUND AND PURPOSE: Icariin, a major active ingredient in traditional Chinese medicines, is attracting increasing attention because of its unique pharmacological effects against ischaemic heart disease. The histone deacetylase, sirtuin-1, plays a protective role in ischaemia/reperfusion (I/R) injury, and this study was designed to investigate the protective role of icariin in models of cardiac I/R injury and to elucidate the potential involvement of sirtuin-1. EXPERIMENTAL APPROACH: I/R injury was simulated in vivo (mouse hearts), ex vivo (isolated rat hearts) and in vitro (neonatal rat cardiomyocytes and H9c2 cells). Prior to I/R injury, animals or cells were exposed to icariin, with or without inhibitors of sirtuin-1 (sirtinol and SIRT1 siRNA). KEY RESULTS: In vivo and in vitro, icariin given before I/R significantly improved post-I/R heart contraction and limited the infarct size and leakage of creatine kinase-MB and LDH from the damaged myocardium. Icariin also attenuated I/R-induced mitochondrial oxidative damage, decreasing malondialdehyde content and increasing superoxide dismutase activity and expression of Mn-superoxide dismutase. Icariin significantly improved mitochondrial membrane homeostasis by increasing mitochondrial membrane potential and cytochrome C stabilization, which further inhibited cell apoptosis. Sirtuin-1 was significantly up-regulated in hearts treated with icariin, whereas Ac-FOXO1 was simultaneously down-regulated. Importantly, sirtinol and SIRT1 siRNA either blocked icariin-induced cardioprotection or disrupted icariin-mediated mitochondrial homeostasis. CONCLUSIONS AND IMPLICATIONS: Pretreatment with icariin protected cardiomyocytes from I/R-induced oxidative stress through activation of sirtuin-1 /FOXO1 signalling.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores , Animais , Benzamidas/farmacologia , Células Cultivadas , Medicamentos de Ervas Chinesas/administração & dosagem , Flavonoides/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Naftóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Sirtuína 1/metabolismo
4.
Zhongguo Wei Zhong Bing Ji Jiu Yi Xue ; 23(4): 243-6, 2011 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-21473830

RESUMO

OBJECTIVE: To reproduce acute respiratory distress syndrome (ARDS) model in rabbit induced by chest blast injury and to analyze the pathogenesis and causes of early death in order to provide the basis for the early diagnosis of lung blast injury and its early warning system to facilitate an early treatment. METHODS: Sixty healthy New Zealand white rabbits were divided into six groups according to the different explosion distance with the random number table method. The survival rate and its resulting pathological changes were observed and patho physiological indexes and lung fluid content were determined at sequential time points post explosion. RESULTS: Shock wave pressure less than 1 210.5 mm Hg (1 mm Hg=0.133 kPa, group A, B) resulted in limited injury to the lung within grade 2 as assessed with the abbreviated injury scale (AIS). The rabbits in these groups recovered soon and survived without any complication. Shock pressure higher than 2 036.1 mm Hg (group D, E) caused severe injuries to the lung, including deep laceration , disruption of lung hilus and large hematoma in the lung, and the injury severity of lungs was assessed above grade 5 as assessed with AIS. All rabbits died within 1 hour post explosion. The groups described above failed to meet the demand of an ARDS model for the present study. Shock wave pressure at 1 917.3 mm Hg (group C) produced extensive contusion from grade 4 to grade 5 as assessed with AIS. The rabbits survived in poor general condition, and arterial partial pressure of oxygen (PaO(2)) lowered within 6 hours . Pathological examination showed extensive and constant multi focal bleeding involving more than four lobes. The alveolar wall was edematous, with partial rupture and alveolar fusion in lung tissues was observed in the group C. Alveoli were filled with inflammatory cells, and hyaline membrane was formed occasionally . Compared with control group, the wet to dry weight ratio (W/D) in lungs increased obviously (6.46±0.24 vs. 3.98±0.19, P<0.01) in group C within 6 hours postinjury. The contents of tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) in plasma and bronchoalveolar lavage fluid (BALF) were also increased distinctly compared with the control group [TNF-α (ng/L) in plasma: 328.89±6.26 vs. 62.12±2.98, TNF-α (ng/L) in BALF: 164.87±4.59 vs. 29.51±1.12; IL-6 (ng/L) in plasma: 128.51±4.13 vs. 19.32±1.53, IL-6 (ng/L) in BALF: 94.97±1.14 vs. 22.72±0.19, all P<0.05]. CONCLUSION: In an airtight environment, rabbit ARDS model can be reproduced successfully by blast injury with 1 917.3 mm Hg explosion pressure; TNF-α and IL-6 are involved in the pathogenesis and development of ARDS in blast injury. Pneumothorax as a result of lung rupture is the chief reason for early death and dysfunction of circulatory system is also an important reason in producing early death.


Assuntos
Traumatismos por Explosões/complicações , Modelos Animais de Doenças , Síndrome do Desconforto Respiratório/etiologia , Traumatismos Torácicos/complicações , Animais , Líquido da Lavagem Broncoalveolar , Feminino , Interleucina-6/análise , Masculino , Coelhos , Fator de Necrose Tumoral alfa/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA