Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 174: 116548, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599064

RESUMO

BACKGROUND: Various heart diseases ultimately lead to chronic heart failure (CHF). In CHF, the inflammatory response is associated with pyroptosis, which is mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome. Fu Xin decoction (FXD) is commonly used in clinical practice to treat CHF and improve inflammatory conditions. However, the specific pharmacological mechanisms of action for FXD in these processes have yet to be fully understood. PURPOSE: The objective of this study was to examine the protective mechanism of FXT against CHF, both in H9c2 cells and mice. METHOD: A CHF mouse model was established, and the effect of FXD was observed via gavage. Cardiac function was evaluated using echocardiography, while serum BNP and LDH levels were analyzed to assess the severity of CHF. Hematoxylin and eosin staining (H&E) and Masson staining were performed to evaluate myocardial pathological changes, and TdT-mediated dUTP Nick-End Labeling staining was used to detect DNA damage. Additionally, doxorubicin was utilized to induce myocardial cell injury in H9c2 cells, establishing a relevant model. CCK8 was used to observe cell viability and detect LDH levels in the cell supernatant. Subsequently, the expression of pyroptosis-related proteins was detected using immunohistochemistry, immunofluorescence, and western blotting. Finally, the pharmacological mechanism of FXD against CHF was further validated by treating H9c2 cells with an NLRP3 activator and inducing NLRP3 overexpression. RESULT: According to current research findings, echocardiography demonstrated a significant improvement of cardiac function by FXD, accompanied by reduced levels of BNP and LDH, indicating the amelioration of cardiac injury in CHF mice. FXD exhibited the ability to diminish serum CRP and MCP inflammatory markers in CHF mice. The results of HE and Masson staining analyses revealed a significant reduction in pathological damage of the heart tissue following FXD treatment. The CCK8 assay demonstrated the ability of FXD to enhance H9c2 cell viability, improve cell morphology, decrease LDH levels in the cell supernatant, and alleviate cell damage. Immunohistochemistry, Western blotting, and immunofluorescence staining substantiated the inhibitory effect of FXD on the NLRP3/caspase-1/GSDMD pyroptosis signaling pathway in both CHF and H9c2 cell injury models. Ultimately, the administration of the NLRP3 activator (Nigericin) and the overexpression of NLRP3 counteract the effects of FXD on cardiac protection and pyroptosis inhibition in vitro. CONCLUSION: FXD exhibits a cardioprotective effect, improving CHF and alleviating pyroptosis by inhibiting the NLRP3/caspase-1/GSDMD pathway.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Camundongos , Caspase 1/efeitos dos fármacos , Caspase 1/metabolismo , Linhagem Celular , Doença Crônica , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
2.
Neural Regen Res ; 19(8): 1741-1750, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103240

RESUMO

Regulated cell death is a genetically determined form of programmed cell death that commonly occurs during the development of living organisms. This process plays a crucial role in modulating homeostasis and is evolutionarily conserved across a diverse range of living organisms. Ferroptosis is a classic regulatory mode of cell death. Extensive studies of regulatory cell death in Alzheimer's disease have yielded increasing evidence that ferroptosis is closely related to the occurrence, development, and prognosis of Alzheimer's disease. This review summarizes the molecular mechanisms of ferroptosis and recent research advances in the role of ferroptosis in Alzheimer's disease. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for Alzheimer's disease.

3.
ACS Chem Neurosci ; 14(19): 3564-3587, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37703318

RESUMO

Alzheimer's disease (AD), the most common type of dementia, is a neurodegenerative disorder characterized by progressive cognitive dysfunction. Epidemiological investigation has demonstrated that, after cardiovascular and cerebrovascular diseases, tumors, and other causes, AD has become a major health issue affecting elderly individuals, with its mortality rate acutely increasing each year. Regulatory cell death is the active and orderly death of genetically determined cells, which is ubiquitous in the development of living organisms and is crucial to the regulation of life homeostasis. With extensive research on regulatory cell death in AD, increasing evidence has revealed that ferroptosis, pyroptosis, and cuproptosis are closely related to the occurrence, development, and prognosis of AD. This paper will review the molecular mechanisms of ferroptosis, pyroptosis, and cuproptosis and their regulatory roles in AD to explore potential therapeutic targets for the treatment of AD.

4.
Adv Sci (Weinh) ; 10(26): e2302123, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449329

RESUMO

Cardiovascular disease is the leading cause of death worldwide. Reperfusion therapy is vital to patient survival after a heart attack but can cause myocardial ischemia/reperfusion injury (MI/RI). Nitric oxide (NO) can ameliorate MI/RI and is a key molecule for drug development. However, reactive oxygen species (ROS) can easily oxidize NO to peroxynitrite, which causes secondary cardiomyocyte damage. Herein, L-arginine-loaded selenium-coated gold nanocages (AAS) are designed, synthesized, and modified with PCM (WLSEAGPVVTVRALRGTGSW) to obtain AASP, which targets cardiomyocytes, exhibits increased cellular uptake, and improves photoacoustic imaging in vitro and in vivo. AASP significantly inhibits oxygen glucose deprivation/reoxygenation (OGD/R)-induced H9C2 cell cytotoxicity and apoptosis. Mechanistic investigation revealed that AASP improves mitochondrial membrane potential (MMP), restores ATP synthase activity, blocks ROS generation, and prevents NO oxidation, and NO blocks ROS release by regulating the closing of the mitochondrial permeability transition pore (mPTP). AASP administration in vivo improves myocardial function, inhibits myocardial apoptosis and fibrosis, and ultimately attenuates MI/RI in rats by maintaining mitochondrial function and regulating NO signaling. AASP shows good safety and biocompatibility in vivo. This findings confirm the rational design of AASP, which can provide effective treatment for MI/RI.


Assuntos
Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/uso terapêutico , Ouro , Arginina/metabolismo , Mitocôndrias/metabolismo
6.
Theranostics ; 13(5): 1632-1648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056566

RESUMO

Background: Singlet oxygen (1O2) has received considerable research attention in photodynamic therapy (PDT) due to its cytotoxic solid features. However, the inherent hypoxic state of the tumor microenvironment (TME) leads to the meager 1O2 quantum yield of inorganic PDT reagents, and their application in vivo remains elusive. Methods: We developed a novel strategy to fabricate active photosynthetic bacteria/photosensitizer/photothermal agent hybrids for photosynthetic tumor oxygenation and PDT and PTT tumor therapy under different laser irradiation sources. Photosynthetic bacteria combined with Ce6 photosensitizer and Au NPs photothermal agent, the obtained Bac@Au-Ce6 effectively targets tumor tissues and further enhances the tumor accumulation of Au-Ce6. Results: The results showed that the Au-Ce6-loaded engineered bacteria (Bac@Au-Ce6) maintained the photosynthetic properties of Syne. After i.v. injection, Bac@Au-Ce6 efficiently aggregates at tumor sites due to the tumor-targeting ability of active Syne. With 660 nm laser irradiation at the tumor site, the photoautotrophic Syne undergoes sustained photosynthetic O2 release and immediately activates O2 to 1O2 via a loaded photosensitizer. PTT was subsequently imparted by 808 laser irradiations to enhance tumor killing further. Conclusions: This work provides a new platform for engineering bacteria-mediated photosynthesis to promote PDT combined with PTT multi-faceted anti-tumor.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Microambiente Tumoral , Luz , Neoplasias/tratamento farmacológico , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral
7.
ACS Nano ; 16(11): 18667-18681, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36264835

RESUMO

Mitochondrial dysfunction and oxidative damage represent important pathological mechanisms of myocardial ischemia-reperfusion injury (MI/RI). Searching for potential antioxidant agents to attenuate MI/RI is of great significance in clinic. Herein, gold-selenium core-shell nanostructures (AS-I/S NCs) with good near-infrared (NIR)-II photoacoustic imaging were designed for MI/RI treatment. The AS-I/S NCs after ischemic myocardium-targeted peptide (IMTP) and mitochondrial-targeted antioxidant peptide SS31 modification achieved cardiomyocytes-targeted cellular uptake and enhanced antioxidant ability and significantly inhibited oxygen-glucose deprivation-recovery (OGD/R)-induced cardiotoxicity of H9c2 cells by inhibiting the depletion of mitochondrial membrane potential (MMP) and restoring ATP synthase activity. Furthermore, the AS-I/S NCs after SS31 modification achieved mitochondria-targeted inhibition of reactive oxygen species (ROS) and subsequently attenuated oxidative damage in OGD/R-treated H9c2 cells by inhibition of apoptosis and oxidative damage, regulation of MAPKs and PI3K/AKT pathways. The in vivo AS-I/S NCs administration dramatically improved myocardial functions and angiogenesis and inhibited myocardial fibrosis through inhibiting myocardial apoptosis and oxidative damage in MI/RI of rats. Importantly, the AS-I/S NCs showed good safety and biocompatibility in vivo. Therefore, our findings validated the rational design that mitochondria-targeted selenium-gold nanocomposites could attenuate MI/RI of rats by inhibiting ROS-mediated oxidative damage and regulating MAPKs and PI3K/AKT pathways, which could be a potential therapy for the MI/RI treatment.


Assuntos
Traumatismo por Reperfusão Miocárdica , Nanocompostos , Técnicas Fotoacústicas , Selênio , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Antioxidantes/metabolismo , Ouro/farmacologia , Ouro/metabolismo , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Apoptose , Estresse Oxidativo
8.
Biomed Pharmacother ; 153: 113502, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076591

RESUMO

NT157, a small-molecule tyrosine kinase inhibitor, exhibits broad-spectrum anti-tumor activity. However, NT157-mediated inhibition against glioma has not been explored yet. Herein, the anticancer effects and underlying mechanism of NT157 against human giloma growth were evaluated. The results showed that NT157 alone significantly inhibited glioma cells growth in vitro by lunching cell cycle arrest through up-regulating p21 and p27, and down-regulating cell cycle-related factors. NT157 alone also induced significant glioma cells apoptosis, followed by PARP cleavage and caspase-3 activation. Our findings further revealed that NT157 triggered significant DNA damage and dysfunction of PI3K/AKT, MAPKs and EGFR-STAT3 signaling pathways. Addition of several kinases inhibitors effectively abrogated NT157-induced DR5 up-regulation, which further confirmed the significant role of DR5 pathway. Moreover, combined treatment of NT157 and TRAIL showed enhanced apoptosis against U251 and U87 cells. However, Knockdown of DR5 expression significantly attenuated combined treatment-induced PARP cleavage and caspase-3 activation. Importantly, combined administration of NT157 and TRAIL in vivo effectively inhibited glioma xenograft growth of nude mice by inhibiting cell proliferation and angiogenesis, and inducing DNA damage and apoptosis. Taken together, our findings validated the rational design that combined strategy of NT157 and TRAIL to trigger DNA damage and apoptosis by up-regulating DR5 could be a high efficient way to combat human glioma.


Assuntos
Apoptose , Glioma , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Animais , Apoptose/efeitos dos fármacos , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Pirogalol/análogos & derivados , Pirogalol/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Sulfonamidas/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
9.
Oxid Med Cell Longev ; 2022: 1733834, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035656

RESUMO

Calycosin (CAL) is the main active component present in Astragalus and reportedly possesses diverse pharmacological properties. However, the cardioprotective effect and underlying mechanism of CAL against doxorubicin- (DOX-) induced cardiotoxicity need to be comprehensively examined. Herein, we aimed to investigate whether the cardioprotective effects of CAL are related to its antipyroptotic effect. A cardiatoxicity model was established by stimulating H9c2 cells and C57BL/6J mice using DOX. In vitro, CAL increased H9c2 cell viability and decreased DOX-induced pyroptosis via NLRP3, caspase-1, and gasdermin D signaling pathways in a dose-dependent manner. In vivo, CAL-DOX cotreatment effectively suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis via the same molecular mechanism. Next, we used nigericin (Nig) and NLRP3 forced overexpression to determine whether CAL imparts antipyroptotic effects by inhibiting the NLRP3 inflammasome in vitro. Furthermore, CAL suppressed DOX-induced mitochondrial oxidative stress injury in H9c2 cells by decreasing the generation of reactive oxygen species and increasing mitochondrial membrane potential and adenosine triphosphate. Likewise, CAL attenuated the DOX-induced increase in malondialdehyde content and decreased superoxide dismutase and glutathione peroxidase activities in H9c2 cells. In vivo, CAL afforded a protective effect against DOX-induced cardiac injury by improving myocardial function, inhibiting brain natriuretic peptide, and improving the changes of the histological morphology of DOX-treated mice. Collectively, our findings confirmed that CAL alleviates DOX-induced cardiotoxicity and pyroptosis by inhibiting NLRP3 inflammasome activation in vivo and in vitro.


Assuntos
Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamassomos/efeitos dos fármacos , Isoflavonas/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Isoflavonas/farmacologia , Masculino , Camundongos , Piroptose
10.
Biomed Pharmacother ; 143: 112133, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474337

RESUMO

MCC950, an NLRP3 inflammasome inhibitor, displays multiple pharmacological properties. However, the protective potential and underlying mechanism of MCC950 against doxorubicin (DOX)-induced myocardial injury has not been well investigated yet. Herein, DOX-induced myocardial injury in mice and in H9c2 myocardial cells was investigated, and the protective effects and underlying mechanism of MCC950 were fully explored. The results showed that MCC950 co-treatment significantly improved myocardial function, inhibited inflammatory and myocardial fibrosis, and attenuated cardiomyocyte pyroptosis in DOX-treated mice. Mechanismly, MCC950 had the potential to inhibit DOX-induced the cleavage of NLRP3, ASC, Caspase-1, IL-18, IL-1ß and GSDMD in vivo. Moreover, MCC950 co-treatment in vivo suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis through the same molecular mechanism. Taken together, our findings validated that MCC950, an NLRP3 inflammasome inhibitor, has the potential to attenuate doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis.


Assuntos
Anti-Inflamatórios/farmacologia , Furanos/farmacologia , Cardiopatias/prevenção & controle , Indenos/farmacologia , Inflamassomos/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Piroptose/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade , Linhagem Celular , Modelos Animais de Doenças , Doxorrubicina , Fibrose , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
11.
Biomed Res Int ; 2021: 6612592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977107

RESUMO

Glioblastoma is a highly invasive primary malignant tumor of the central nervous system. Cannabinoid analogue WIN 55,212-2 (WIN) exhibited a novel anticancer effect against human tumors. However, the anticancer potential and underlying mechanism of WIN against human glioma remain unclear. Herein, the anticancer efficiency and mechanism of WIN in U251 human glioma cells were investigated. The results showed that WIN dose-dependently inhibited U251 cell proliferation, migration, and invasion in vitro. WIN treatment also effectively suppressed U251 tumor spheroids growth ex vivo. Further studies found that WIN induced significant apoptosis as convinced by the caspase-3 activation and release of cytochrome C. Mechanism investigation revealed that WIN triggered ROS-mediated DNA damage and caused dysfunction of VEGF-AKT/FAK signal axis. However, ROS inhibition effectively attenuated WIN-induced DNA damage and dysfunction of VEGF-AKT/FAK signal axis and eventually improved U251 cell proliferation, migration, and invasion. Taken together, our findings validated that WIN had the potential to inhibit U251 cell proliferation, migration, and invasion and induce apoptosis by triggering ROS-dependent DNA damage and dysfunction of VEGF-AKT/FAK signal axis.


Assuntos
Benzoxazinas/farmacologia , Glioma/metabolismo , Morfolinas/farmacologia , Naftalenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos
12.
J Nanobiotechnology ; 19(1): 98, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827604

RESUMO

BACKGROUND: Nano-Fenton reactors as novel strategy to selectively convert hydrogen peroxide (H2O2) into active hydroxyl radicals in tumor microenvironment for cancer therapy had attracted much attention. However, side effects and low efficiency remain the main drawbacks for cancer precise therapy. RESULTS: Here, ruthenium-loaded palmitoyl ascorbate (PA)-modified mesoporous silica (Ru@SiO2-PA) was successfully fabricated and characterized. The results indicated that Ru@SiO2-PA under pH6.0 environment displayed enhanced growth inhibition against human cancer cells than that of pH7.4, which indicated the super selectivity between cancer cells and normal cells. Ru@SiO2-PA also induced enhanced cancer cells apoptosis, followed by caspase-3 activation and cytochrome-c release. Mechanism investigation revealed that Ru@SiO2-PA caused enhanced generation of superoxide anion, which subsequently triggered DNA damage and dysfunction of MAPKs and PI3K/AKT pathways. Moreover, Ru@SiO2-PA effectively inhibited tumor spheroids and tumor xenografts growth in vivo by induction of apoptosis. The real-time imaging by monitoring Ru fluorescence in vitro and in vivo revealed that Ru@SiO2-PA mainly accumulated in cell nucleus and tumor xenografts. Importantly, Ru@SiO2-PA showed no side effects in vivo, predicting the safety and potential application in clinic. CONCLUSIONS: Our findings validated the rational design that Ru@SiO2-PA can act as novel tumor microenvironment-response nano-Fenton reactors for cancer precise therapy.


Assuntos
Rutênio/química , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Fosfatidilinositol 3-Quinases , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Neurochem Res ; 46(5): 1112-1118, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33555527

RESUMO

Immune response plays a vital role in the pathogenesis of neuropathic pain. Immune response-targeted therapy becomes an effective strategy for treating neuropathic pain. Licochalcone A (Lic-A) possesses anti-inflammatory and neuroprotective effects. However, the potential of Lic-A to attenuate neuropathic pain has not been well explored. To investigate the protective effect and evaluate the underlying mechanism of Lic-A against neuropathic pain in a rat model. Chronic constriction injury (CCI) surgery was employed in rats to establish neuropathic pain model. Rats were intraperitoneally administrated with Lic-A (1.25, 2.50 and 5.00 mg/kg) twice daily. Mechanical withdrawal threshold and thermal withdrawal latency were used to evaluate neuropathic pain. After administration, the lumbar spinal cord enlargement of rats was collected for ELISA, Western blot and immunofluorescence analysis. Mechanical withdrawal threshold and thermal withdrawal latency results showed that Lic-A significantly attenuated CCI-evoked neuropathic pain in dose-dependent manner. Lic-A administration also effectively blocked microglia activation. Moreover, Lic-A suppressed p38 phosphorylation and the release of inflammatory factors such as tumor necrosis factor-α, interleukin-1 and interleukin-6. Our findings provide evidence that Lic-A may have the potential to attenuate CCI-evoked neuropathic pain in rats by inhibiting microglia activation and inflammatory response.


Assuntos
Chalconas/uso terapêutico , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Doença Crônica/tratamento farmacológico , Constrição Patológica , Inflamação/complicações , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Neuralgia/complicações , Fosforilação/efeitos dos fármacos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Front Bioeng Biotechnol ; 9: 781608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004643

RESUMO

Chemotherapy is still one of the most common ways to treat human glioblastoma in clinic. However, severe side effects limited its clinic application. Design of cancer-targeted drugs with high efficiency and low side effect is urgently needed. Herein, silver nanoparticles (Ag NPs) and nano-selenium (Se NPs) conjugated with RGD peptides (Ag@Se@RGD NPs) to target integrin high-expressed glioma were designed. The results found that Ag@Se@RGD NPs displayed stable particle size and morphology in physiological condition, and induced significant integrin-targeted intracellular uptake. Ag@Se@RGD NPs in vitro dose-dependently inhibited U251 human glioma cells growth by induction of cells apoptosis through triggering the loss of mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), and MAPKs activation. However, ROS inhibition dramatically attenuated Ag@Se@RGD NPs-induced MAPKs activation, indicating the significant role of ROS as an early apoptotic event. Importantly, Ag@Se@RGD NPs administration in vivov effectively inhibited U251 tumor xenografts growth by induction of apoptosis through regulation MAPKs activation. Taken together, our findings validated the rational design that Ag-Se NPs conjugated with RGD peptides was a promising strategy to combat human glioma by induction of apoptosis through triggering mitochondrial dysfunction and ROS-dependent MAPKs activation.

16.
Biomater Sci ; 8(24): 7154-7165, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33155581

RESUMO

Co-delivery of H2O2-generating agent and catalyst via a nano-Fenton reactor to the tumor acidic microenvironment for amplified tumor oxidation therapy has been widely studied. However, high side effects and low efficiency remain the limitations of the design and development of this process. Herein, a new nano-Fenton reactor in which mesoporous silica is integrated with Fe3O4 and palmitoyl ascorbate (Fe3O4@SiO2-PA) was designed, with the product exhibiting good dispersion, stability, uniformity and consistent spectral characteristics. The results show that Fe3O4@mSiO2-PA successfully enters cancer cells, significantly inhibits HeLa cells and 3D tumor spheroid growth in vitro via the induction of apoptosis. Meanwhile, Fe3O4@mSiO2-PA administration in vivo markedly suppresses HeLa tumor xenografts growth via the induction of apoptosis, followed by caspase-3 activation and cytochrome C release. Further investigation revealed that Fe3O4@mSiO2-PA causes enhanced production of reactive oxygen species (ROS), which subsequently triggers DNA damage and causes dysfunction of the MAPK and PI3K/AKT pathways. Importantly, Fe3O4@mSiO2-PA shows few side effects and good biocompatibility in vivo. Taken together, these results suggest that Fe3O4@mSiO2-PA inhibits HeLa cell growth in vitro and in vivo by triggering enhanced oxidative damage and regulating multiple signal pathways. Our findings validate the rational design that mesoporous silica integrated with Fe3O4 and palmitoyl ascorbate can act as a new nano-Fenton reactor for amplified tumor oxidation therapy.


Assuntos
Peróxido de Hidrogênio , Dióxido de Silício , Animais , Ácido Ascórbico/análogos & derivados , Compostos Férricos , Óxido Ferroso-Férrico , Células HeLa , Humanos , Nanopartículas , Fosfatidilinositol 3-Quinases , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biosens Bioelectron ; 168: 112415, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937233

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the co-Editors in Chief and with the agreement of the authors, after a reader observed that Figure 3b had been partially duplicated with Figure 3a published in a previous publication by the same authors (Anal. Chem. (2017) 89:1163-1169) https://doi.org/10.1021/acs.analchem.6b03536.

18.
Biomed Pharmacother ; 130: 110544, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32721630

RESUMO

Osteosarcoma is a highly invasive primary malignant bone tumor. PI3K/mTOR pathway plays a key role in tumor progression, and inhibition of PI3K/mTOR pathway represents a novel strategy in therapy of osteosarcoma. CCT128930 and VS5584 are both inhibitors of PI3K/mTOR, but the anticancer mechanism of CCT128930 or/and VS5584 against human osteosarcoma cells remains unclear. Herein, U2OS and MG63 human osteosarcoma cells were cultured, and the anticancer effects of CCT128930 alone and the combined effect of CCT128930 and VS5584 against human osteosarcoma cells were explored. The results showed that CCT128930 as PI3K/mTOR inhibitor effectively inhibited p-p70 and p-AKT expression and dose-dependently inhibited U2OS cells and MG63 human osteosarcoma cells growth. Further studies found that CCT128930 triggered significant G-1 phase arrest and apoptosis, as convinced by the dysfunction of p27, Cyclin B1, Cyclin D1 and Cdc2, and PARP cleavage and caspase-3 activation. Moreover, CCT128930 treatment obviously enhanced VS5584-induced growth inhibition and apoptosis in human osteosarcoma cells, followed by enhanced PARP cleavage and caspase-3 activation. Taken together, CCT128930 alone or combined treatment with CCT128930 and VS5584 both effectively inhibited human osteosarcoma cells growth by induction of G1-phase arrest and apoptosis through regulating PI3K/mTOR and MAPKs pathways.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Morfolinas/farmacologia , Osteossarcoma/tratamento farmacológico , Purinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Caspase 3/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores
19.
Curr Cancer Drug Targets ; 20(8): 616-623, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32286946

RESUMO

BACKGROUND: Activation of the PI3K/mTOR signaling pathway plays a key role in the progression of human osteosarcoma. Studies have confirmed that VS-5584 was a novel inhibitor of the PI3K/mTOR pathway, and displayed potential anticancer activity. OBJECTIVE: To explore the anticancer effect and underlying mechanism of VS-5584 against the growth of human osteosarcoma cells. METHODS: U2OS and MG-63 human osteosarcoma cells were cultured and the cytotoxicity, cell apoptosis in VS-5584-treated cells were explored by the CCK8 assay, flow cytometric analysis and western blot. Cell migration and tube formation were also employed to examine the anticancer potential. RESULTS: The results showed that VS-5584 treatment dose-dependently inhibited the growth of U2OS and MG-63 cells by induction of G1-phase arrest through regulating p21, p27, Cyclin B1 and Cdc2. Further investigation revealed that VS-5584 treatment effectively inhibited the PI3K/mTOR signaling pathway and triggered MAPK phosphorylation. Moreover, VS-5584 treatment dramatically suppressed cell migration and tube formation of HUVECs, followed by the down-regulation of HIF-1α and VEGF. CONCLUSION: Our findings validated that VS-5584 may be a promising anticancer agent with potential application in the chemotherapy and chemoprevention of human osteosarcoma.


Assuntos
Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Morfolinas/farmacologia , Osteossarcoma/tratamento farmacológico , Fosfatidilinositol 3-Quinase/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Purinas/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células , Humanos , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Células Tumorais Cultivadas
20.
Biomed Pharmacother ; 122: 109677, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31810012

RESUMO

Acetylshikonin, a natural naphthoquinone derivative compound from Lithospermum erythrorhyzon, has been reported to kill bacteria, suppress inflammation, and inhibit tumor growth. However, the effect of acetylshikonin on human chronic myelocytic leukemia (CML) cells apoptosis and its detailed mechanisms remains unknown. The purpose of the present study was to investigate whether acetylshikonin could inhibit proliferation or induce apoptosis of the K562 cells, and whether by regulating the NF-κB signaling pathway to suppress the development of CML. K562 cells were treated with serial diluted acetylshikonin at different concentrations. Our data showed that K562 cell growth was significantly inhibited by acetylshikonin with an IC50 of 2.03 µM at 24 h and 1.13 µM at 48 h, with increased cell cycle arrest in S-phase. The results of annexin V-FITC/PI and AO/EB staining showed that acetylshikonin induced cell apoptosis in a dose-dependent manner. K562 cells treated with acetylshikonin underwent massive apoptosis accompanied by a rapid generation of reactive oxygen species (ROS). Scavenging the ROS completely blocked the induction of apoptosis following acetylshikonin treatment. The levels of the pro-apoptotic proteins Bax, cleaved caspase-9, cleaved PARP and cleaved caspase-3 increased with increased concentrations of acetylshikonin, while the level of the anti-apoptotic protein Bcl-2 was downregulated. The levels of Cyt C and AIF, which are characteristic proteins of the mitochondria-regulated intrinsic apoptotic pathway, also increased in the cytosol after acetylshikonin treatment. However, the mitochondrial fraction of Cyt C and AIF were decreased under acetylshikonin treatment. In addition, acetylshikonin decreased Bcr-Abl expression and inhibited its downstream signaling. Acetylshikonin could lead to a blockage of the NF-κB signaling pathway via decreasing nuclear NF-κB P65 and increasing cytoplasmic NF-κB P65. Moreover, acetylshikonin significantly inhibited the phosphorylation of IkBα and IKKα/ß in K562 cells. These results demonstrated that acetylshikonin significantly inhibited K562 cell growth and induced cell apoptosis through the mitochondria-regulated intrinsic apoptotic pathway. The mechanisms may involve the modulating ROS accumulation, inhibition of NF-κB and BCR-ABL expression. The inhibition of BCR-ABL expression and the inactivation of the NF-κB signaling pathway caused by acetylshikonin treatment resulted in K562 cell apoptosis. Together, our results indicate that acetylshikonin could serve as a potential therapeutic agent for the future treatment of CML.


Assuntos
Antraquinonas/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Fusão bcr-abl/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Vero , Quinase Induzida por NF-kappaB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...